Lecture 4 - Lecture4 Probability LearningObjectives...

Info iconThis preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
Lecture 4 Probability Probability
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Learning Objectives Comprehend  the different ways of assigning  probability Understand and apply  marginal, union, joint, and  conditional probabilities Select  the appropriate law of probability to use in  solving problems Solve  problems using the laws of probability  including the laws of addition, multiplication and  conditional probability Revise  probabilities using Bayes’ rule
Background image of page 2
Introduction Generally, business decision making is  based on an uncertain environment. We  can use probability concepts to determine  the likelihood of particular outcomes Other specific applications are in the  gambling and insurance industries
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Methods of Assigning  Probabilities Classical method of assigning probability  (rules and laws) Relative frequency of occurrence  (cumulated historical data) Subjective probability (personal intuition  or reasoning)
Background image of page 4
Classical Probability Number of outcomes leading to  the event  divided by the total  number of outcomes possible Each outcome is equally likely Determined  a priori  - before  performing the experiment Applicable to games of chance occurs event he in which t outcomes of number the outcomes of number total : ) ( = = = e e n N where N n E P
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Classical Probability The highest value of any probability is 1 – this  event is certain to occur The lowest value of any probability is 0 – this  event is certain not to occur 0 ( ) 1 P E ≤ ≤
Background image of page 6
Relative Frequency  Probability Based on historical  data Computed after  performing the  experiment Number of times an  event occurred divided  by the number of trials P(E) =  where:   N  = total number of  opportunities for an event  to occur x  = number of times an event  occurred x N
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Subjective Probability Comes from a person’s intuition or reasoning Subjective - different individuals may (correctly)  assign different numeric probabilities to the same  event Degree of belief Useful for unique (single-trial) experiments New product introduction Initial public offering of common stock Site selection decisions Sporting events
Background image of page 8
Structure of Probability Experiment Event Elementary Events Sample Space Unions and Intersections Mutually Exclusive Events Independent Events Collectively Exhaustive Events Complementary Events
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Experiment Experiment: a process that produces outcomes More than one possible outcome Only one outcome per trial Trial: one repetition of the process Event: an outcome of an experiment (usually 
Background image of page 10
Image of page 11
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 50

Lecture 4 - Lecture4 Probability LearningObjectives...

This preview shows document pages 1 - 11. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online