&ccedil;&not;&not;2&ccedil;&laquo;&nbsp;(1)

# &ccedil;&not;&not;2&ccedil;&laquo;&n...

This preview shows pages 1–7. Sign up to view the full content.

[email protected] 1 s 2 LTI 2.0 ) ( ) ( LTI t y t x k k ) ( ) ( k k k k t t y t t x - - ) ( ) ( 1 1 = = - - N k k k k N k k k k t t y a t t x a y y ) ( ) ( ) ( t y t x t x k k 2.1 LTI

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
[email protected] 2 s 2 LTI T T ) ( ~ 1 . 1 . 2 t δ S dt t x = - ) ( -∞ = k k x ) (
[email protected] 3 s 2 LTI - - -∞ = = = τ d x dt t x k x k ) ( ) ( ) ( lim 0 0 s s ) ( ) ( s s k d ) ( ) ( lim 0 t t δ = = - k k t k x t x ) ( ) ( ) (

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
[email protected] 4 s 2 LTI - -∞ = - = - = 0 ) ( ) ( ) ( ) ( lim ) ( τ δ d t x k t k x t x k ) ( ) ( ) ( 0 0 t x dt t t t x = - - 2.1.2 LTI @ s 1 ) ( ) ( ) ( ) ( t h t y t t x zs = = δ ) ( 2 t h ) ( ) ( t h t ) ( ) ( - - t h t y
[email protected] 5 s 2 LTI ) ( ) ( ) ( ) ( τ δ - - t h x t x y - - - - ) ( ) ( ) ( ) ( d t h x d t x y ) ( * ) ( ) ( ) ( ) ( ) ( t h t x d t h x t y t x zs = - = - 3 ) ( ) ( ) ( ) ( ) ( t y b a t u e t x t u e t h zs bt at y y y y = = - - - - - - - - = - = = ) ( ) ( ) ( ) ( ) ( ) ( * ) ( ) ( d t u e u e d t h x t h t x t y t a b zs y - - - = t t a b d e e 0 ) ( ) ( t u

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
[email protected] 6 s 2 LTI t b a at t b a at b a e t u e d e t u e 0 ) ( 0 ) ( ) ( ) ( - = = - - - - τ ) ( 1 ) ( ) ( t u b a e e
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 18

&ccedil;&not;&not;2&ccedil;&laquo;&n...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online