&ccedil;&not;&not;&aring;…&shy;&ccedil;&laquo;&nbsp;&auml;&frac12;œ&auml;&cedil;š&ccedil;&shy;”&aeli

# ç¬¬å…­ç« ä½œä¸šç­”&aeli

This preview shows pages 1–3. Sign up to view the full content.

(P257-260) 6.10-6.25 6.10 x x y y y 3 2 3 2 + = + y zs (t). (1) x(t)=u(t) (2) x ) ( ) ( t u e t t = 3 2 3 2 ) ( ) ( ) ( 2 + + = = s s s s X s Y s H 1 s s X 1 ) ( = s s s s s s s s 1 3 4 1 1 4 5 1 3 2 3 2 ) ( 2 + = + + = Y ) ( 1 4 1 4 5 ) ( 3 t u e e t y t t zs = 2 1 1 ) ( + = s s X 1 4 1 3 8 3 1 8 5 1 1 3 2 3 2 ) ( 2 + + = + + + = s s s s s s s s Y ) ( 4 1 8 3 8 5 ) ( 3 t u e e e t y t t t zs = 6.11 H(s) 4 ) ( 2 + = s s s H 1 ) 0 ( , 0 ) 0 ( = = y y ) ( ) ( 4 ) ( 4 ) ( 2 t x t y t y s s s H = + + = ) 0 ( ) ( ) ( 4 ) 0 ( ) 0 ( ) ( 2 x s sX s Y y sy s Y s = + 4 1 ) 0 ( ) ( 4 ) 0 ( ) 0 ( ) 0 ( ) ( ) ( 2 2 + + = + + + = s x s sX s y sy x s sX s Y 4 1 ) ( 2 + = s s Y zi ) ( 2 sin 2 1 ) ( t u t t y zi = 6.12 x(t) y zs . ) 0 ( + zs y ) ( zs y ) ( ) ( ) ( 4 3 t u e t x t x x y y y t = + = + + 1 1 1 3 4 ) ( 2 + + + + = s s s s s

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Y(s) t 0 0 ) 1 )( 1 3 ( ) 4 ( lim ) ( lim ) 0 ( 2 = + + + + = = + s s s s s s sY y s s zs Y(s) s 0 ) 1 )( 1 3 ( ) 4 ( lim ) ( lim ) ( 2 0 0 = + + + + = = s s s s s s sY y s s zs 6.13 LTI 1 t t e t x 2 ) ( = t e t y 2 6 1 ) ( = 2 h(t) ) ( ) ( ) ( ) ( 2 4 t bu t u e t h dt dh t + = + b b H(s) 1 6 1 ) ( 2 = = s s H 2 ) 4 )( 2 ( 4 ) 1 ( 4 1 2 1 ) ( + + + + = + + + = s s s b s b s b s s s H 1 2 b=1 ) 4 ( 2 ) ( + = s s s H 1 H(s) 2 h(t) 6.14 LTI t>0 x(t)=0 2 2
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 7

ç¬¬å…­ç« ä½œä¸šç­”&aeli

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online