&ccedil;&not;&not;&auml;&cedil;‰&ccedil;&laquo;&nbsp;&auml;&frac12;œ&auml;&cedil;š&iuml;&frac14;&iqu

# ç¬¬ä¸‰ç« ä½œä¸šï¼&iqu

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: P122-129 3.8-3.16 3.8 1 3-31 2/T -2/T E/2 x ( t ) t (a) -E/2 (b) (c) t x ( t ) E/2 -E/2 T -T 4/T-2/T 2/T t x ( t ) E/2-4/T-E/2 4/T T -T -4-2 5 4 2 1 6 1 2 3-31 3.8 (d) 2 e ) ( cos > • − a t u t at ω 3 t t 2 cos 3 ⋅ − e 4 1 ) ( < − ∑ ∞ = k k k a kT t a δ 5 ) 2 3 ( 2 ) ( t t − + ′ δ δ 6 [ ] ) ( 4 cos t u t te t − 7       − −       ) 1 ( ) 1 ( 2 sin sin t t t t π π π π 8 x ( t ) 3-34 a 9 x ( t ) 3-34 b 10 x ( t ) 3-34 c 11 x ( t ) 3-34 d 1 3-31 a k 3.2 a k ≠ k π ω ω k j E dt e E T dt e E T a k T t jk T t jk k 2 ] ) 1 ( 1 [ 2 1 ) 2 ( 1 2 2 − − = + − = ∫ ∫ − − − a a k (3.2 (2) ) = k = a ( ) ∑ ∑ ∞ −∞ = ∞ −∞ = − − − − =       − = k k k k k k jE T k a j X ) 1 ( 1 2 2 ) ( ω ω δ π ω δ π ω ) 2 ( 2 1 π k Sa k = a b a k 3.2 (3) ( ) ∑ ∑ ∞ −∞ = ∞ −∞ = − =       − = k k k k k Sa T k a j X ) 2 ( 2 2 ) ( ω ω δ π π π ω δ π ω c a k 3.2 (4) π ω ω k E j dt te T E T dt e t x T a k T T T T t jk t jk k 2 ) 1 ( 1 ) ( 1 2 2 2 2 − = = = ∫ ∫ − − − − ( ) ∑ ∑ ∞ −∞ = ∞ −∞ = − − =       − = k k k k k k jE T k a j X ) 1 ( 2 2 ) ( ω ω δ π ω δ π ω π π k j e a k jk k 2 ) 1 ( 2 2 − − + − = − d a k 3.2 (5) ( ) ∑ ∑ ∞ −∞ = − ∞ −∞ = − − − − − =       − = k k jk k k k k e j T k a j X 2 ) 1 ( 2 2 2 ) ( ω ω δ π ω δ π ω π 2 e ) ( cos > • − a t u t at ω ω j a t u e F at + → ← − 1 ) ( [ ] )) ( ( )) ( ( 2 1 cos ) ( ω ω ω ω ω + + − → ← j X j X t t x F 2 2 ) ( ) ( 1 ) ( 1 2 1 ) ( cos ω ω ω ω ω ω ω ω + + + =       + + + − + → ← • − j a j a j a j a t u t F at e 3 t t 2 cos 3 ⋅ − e 2 2 2 ) ( ω + → ← − a a t u e F t a [ ] )) ( ( )) ( ( 2 1 cos ) ( ω ω ω ω ω + + − → ← j X j X t t x F 2 2 2 2 3 ) 2 ( 9 3 ) 2 ( 9 3 ] ) 2 ( 9 6 ) 2 ( 9 6 [ 2 1 2 cos + + + − + = + + + − + → ← − ω ω ω ω F t t e 4 1 ) ( < − ∑ ∞ = k k k a kT t a δ F kT j F F e kT t t ω δ δ − → ← − ⇒ → ← ) ( 1 ) ( ∑ ∑ ∞ = − ∞ = → ← − ) ( k kT j k F k k e a kT t a ω δ 5 ) 2 3 ( 2 ) ( t t − + ′ δ δ ) ( t δ ′ ) 2 3 ( 2 t − δ F 1 ) ( → ← FT t δ ω δ 3 ) 3 ( j FT e t → ← + ω δ 2 3 2 1 ) 2 3 ( j FT e t − → ← − 1 ) ( ' ⋅  → ← ω δ j t FT ω ω ω 2 3 2 1 ) ( j e j j X − + = 6 [ ] ) ( 4 cos t u t te t − 2 ) ( ) 4 cos( ) ( 1 t u t e t x t − = 16 ) 1 ( 1 ) ( 2 1 + + + = ω ω ω j j j X 2 2 2 1 ] 16 ) 1 [( 16 ) 1 ( ) ( ) ( + + − + = = ω ω ω ω ω j j d j dX j j X 7       − −       ) 1 ( ) 1 ( 2 sin sin t t t t π π π π t t t x π π ) sin( ) ( 1 = ) 1 ( ) 1 ( 2 sin ) ( 2 − − = t t t x π π    < = 1 ) ( 1 π ω ω j X    < = − 2 ) ( 2 π ω ω ω...
View Full Document

## This note was uploaded on 08/22/2011 for the course EE 201 taught by Professor Yhm during the Spring '05 term at Zhejiang University.

### Page1 / 12

ç¬¬ä¸‰ç« ä½œä¸šï¼&iqu

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online