第四章作业答æ&i

第四章作业答æ&i

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
(P173~183) 4.1 ~ 4.15 4.1 a k 1 x[n] 4-28 a 2 x[n] 4 28 b 3 {} −∞ = + = m m n m n n x ] 4 1 [ δ 4 ] 4 [ δ 2 ] [ 4 ) 3 / 2 sin( ) 3 / 2 cos( ] [ n n n x π + = 5 3 0 ), 4 / π sin( 1 ] [ = n n n x x[n] 4 6 11 0 ), 4 / π sin( 1 ] [ = n n n x x[n] 12 7 n n x = 3 1 ] [ 7 0 n x[n] 8 0 6 -6 n 1 (a) 06 -6 n -1 1 2 (b) 4 28 1 N 6 > =< > =< = = 6 3 2 ] [ k n jk k N k n N jk k e a e a n x + = + + + = + + + = = = π 6 cos 2 π 2 cos 2 6 1 6 1 1 6 1 ] [ 1 π 2 π 2 π 6 π 6 π 2 π 2 π 3 π 2 3 π 1 0 3 π k k e e e e e e e e e e n x N a k j k j k j k j k j k j k j k j k j N n n jk k π 6 cos π 2 cos 3 1 k k a k + = k a 2 π k
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
= = × = × = + + + = = = 0 3 2 5 1 6 π sin 6 3 π 2 sin 6 1 1 1 6 1 1 6 1 ] [ 1 2 π 6 π 6 π 6 π 3 π 2 3 π 2 3 π 2 3 π 3 π 4 π 3 π 2 3 π 1 0 3 π k k k k e e e e e e e e e e e e e n x N a k j k j k j k j k j k j k j k j k j k j k j k j N n n jk k = = 0 3 2 5 1 6 π sin 6 3 π 2 sin k k k k a k k a 2 π k (2) N 6 > =< > =< = = 6 3 2 ] [ k n jk k N k n N jk k e a e a n x π + = + + = = = 3 2 cos 2 3 cos 4 1 6 1 2 2 1 6 1 ] [ 1 3 5 3 4 3 2 3 1 0 2 k k e e e e e n x N a k j k j k j k j N n n N jk k + = 3 2 cos 2 3 cos 4 1 6 1 k k a k , a k = = 3 5 , 4 , 2 , 1 , 0 0 k k 3 N 4 > =< > =< = = 4 2 π π 2 ] [ k n jk k N k n N jk k e a e a n x k j k e e n x N a k j N n n N jk k 2 π sin 2 π cos 2 1 4 2 4 1 ] [ 1 2 π 1 0 π 2 + = + = = = 2 π sin 2 π cos 2 1 2 k k a k + + = a k + = + = + = = = + 3 4 2 2 4 π 1 4 2 4 0 2 π cos 2 1 2 π sin m k arctg m k m k arctg m k k k arctg m 4 N 3
Background image of page 2
n j n j n j n j n j n j e j e j j e e e e n n n x 3 2 3 2 3 2 3 2 3 2 3 2 2 1 2 1 2 2 ) 3 / 2 sin( ) 3 / 2 cos( ] [ π + + = + + = + = > =< > =< = = 3 3 2 2 ] [ k n jk k N k n N jk k e a e a n x 0 0 = a 2 1 1 j a = 2 1 1 j a + = a k + = + = = 2 3 4 1 3 4 3 0 m k m k m k 5 N 4 > =< > =< = = 4 2 π π 2 ] [ k n jk k N k n N jk k e a e a n x + = + + = = = 2 π cos ) 2 2 ( 1 4 1 ) 2 2 1 ( ) 2 2 1 ( 1 4 1 ] [ 1 2 π 3 2 π 1 0 π 2 k e e e n x N a k j k j N n n N jk k + = 2 π cos ) 2 2 ( 1 4 1 k a k a k 0 6 N 12 > =< > =< = = 12 6 π π 2 ] [ k n jk k N k n N jk k e a e a n x = = = = 11 0 6 1 0 2 ) 4 / sin( 1 ( 12 1 ] [ 1 n n k j N n n N jk k e n e n x N a ] ) 1 ( 2 6 5 cos ) 2 2 1 ( 2 3 2 cos 2 2 cos ) 2 2 1 ( 2 6 cos ) 2 2 1 ( 2 1 [ 12 1 ) 4 sin 1 ( 12 1 11 0 6 k n n jk k k k k k e n a + + + + + + = = = 7 N 8 > =< > =< = = 8 4 π π 2 ] [ k n jk k N k n N jk k e a e a n x 4 4 8 4 8 4 7 0 4 1 0 2 3 1 1 6561 820 ) 3 ( 8 ) 3 1 1 ( 3 3 1 1 3 1 1 8 1 3 1 8 1 ] [ 1 jk k j jk
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 08/22/2011 for the course EE 201 taught by Professor Yhm during the Spring '05 term at Zhejiang University.

Page1 / 24

第四章作业答æ&i

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online