Extra_practice - Additional Practice Problems Chapter 3 Section 3.2.1 Basic rules of difierentiation Find the derivative of the function by using

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Additional Practice Problems Chapter 3 Section 3.2.1 Basic rules of difierentiation Find the derivative of the function by using the rules of difierentiation. 1. f ( x ) = x 2 : 3 2. f ( r ) = …r 2 3. f ( x ) = 3 p x 4. f ( x ) = 7 x ¡ 12 5. f ( t ) = 2 3 t 3 = 2 6. f ( u ) = 2 p u 7. f ( x ) = ¡ 2 x 3 + 3 x 2 ¡ x ¡ 25 8. f ( x ) = 0 : 002 x 4 +0 : 03 x 3 ¡ 0 : 1 x 2 +17 9. f ( t ) = x 3 ¡ 4 x 2 + 3 x 10. f ( x ) = 4 x 4 ¡ 3 x 3 + 2 x 11. f ( s ) = 2 s 2 ¡ 3 s 1 = 3 12. f ( x ) = 4 x 5 = 4 + 2 x 3 = 2 + 4 p x ¡ x ln2 Section 3.2.2 The Product and Quotient Rules Difierentiate the given functions. 13. f ( x ) = (3 x +1)( x 2 ¡ 2) 14. f ( x ) = ( x 3 ¡ 1)( x 2 +2 x ) 15. f ( x ) = (5 x 2 +1)(2 p x ¡ 1) 16. f ( x ) = x 3 e x 17. f ( x ) = x 2 ln x 18. f ( x ) = e x ln x 19. f ( x ) = x ¡ 1 2 x + 1 20. f ( t ) = t 2 ¡ 4 t + 1 21. f ( x ) = x 2 + 2 x 2 + x + 1 22. f ( x ) = 2 e x x 23. f ( x ) = e x ¡ 1 e x + 1 24. f ( x ) = 2 ln x x Section 3.2.3 The Chain Rule Find the derivative of the given function. 25. f ( x ) = (2 x ¡ x 2 ) 3 26. f ( x ) = (3 x + 1) ¡ 2 27. f ( x ) = ( x 2 ¡ 4) 3 = 2 28. f ( x ) = p 4 x + 5 29. f ( x ) = 1 p 2 x ¡ 3 30. f ( u ) = ( u ¡ 1 ¡ u ¡ 2 ) 3 31. f ( x ) = ( x ¡ 1) 2 (2 x + 1) 4 32. f ( x ) = ± x + 3 x ¡ 2 3 33. f ( t ) = ± t 2 t + 1 3 = 2 34. f ( x ) = x 2 ( x 2 ¡ 1) 4 35. f ( x ) = 3 e ¡ 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 08/24/2011 for the course ENGINEERIN 1122 taught by Professor Stadnik during the Spring '11 term at University of Ottawa.

Page1 / 3

Extra_practice - Additional Practice Problems Chapter 3 Section 3.2.1 Basic rules of difierentiation Find the derivative of the function by using

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online