Extra_practice - Additional Practice Problems Chapter 3...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Additional Practice Problems Chapter 3 Section 3.2.1 Basic rules of difierentiation Find the derivative of the function by using the rules of difierentiation. 1. f ( x ) = x 2 : 3 2. f ( r ) = …r 2 3. f ( x ) = 3 p x 4. f ( x ) = 7 x ¡ 12 5. f ( t ) = 2 3 t 3 = 2 6. f ( u ) = 2 p u 7. f ( x ) = ¡ 2 x 3 + 3 x 2 ¡ x ¡ 25 8. f ( x ) = 0 : 002 x 4 +0 : 03 x 3 ¡ 0 : 1 x 2 +17 9. f ( t ) = x 3 ¡ 4 x 2 + 3 x 10. f ( x ) = 4 x 4 ¡ 3 x 3 + 2 x 11. f ( s ) = 2 s 2 ¡ 3 s 1 = 3 12. f ( x ) = 4 x 5 = 4 + 2 x 3 = 2 + 4 p x ¡ x ln2 Section 3.2.2 The Product and Quotient Rules Difierentiate the given functions. 13. f ( x ) = (3 x +1)( x 2 ¡ 2) 14. f ( x ) = ( x 3 ¡ 1)( x 2 +2 x ) 15. f ( x ) = (5 x 2 +1)(2 p x ¡ 1) 16. f ( x ) = x 3 e x 17. f ( x ) = x 2 ln x 18. f ( x ) = e x ln x 19. f ( x ) = x ¡ 1 2 x + 1 20. f ( t ) = t 2 ¡ 4 t + 1 21. f ( x ) = x 2 + 2 x 2 + x + 1 22. f ( x ) = 2 e x x 23. f ( x ) = e x ¡ 1 e x + 1 24. f ( x ) = 2 ln x x Section 3.2.3 The Chain Rule Find the derivative of the given function. 25. f ( x ) = (2 x ¡ x 2 ) 3 26. f ( x ) = (3 x + 1) ¡ 2 27. f ( x ) = ( x 2 ¡ 4) 3 = 2 28. f ( x ) = p 4 x + 5 29. f ( x ) = 1 p 2 x ¡ 3 30. f ( u ) = ( u ¡ 1 ¡ u ¡ 2 ) 3 31. f ( x ) = ( x ¡ 1) 2 (2 x + 1) 4 32. f ( x ) = ± x + 3 x ¡ 2 3 33. f ( t ) = ± t 2 t + 1 3 = 2 34. f ( x ) = x 2 ( x 2 ¡ 1) 4 35. f ( x ) = 3 e ¡ 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 3

Extra_practice - Additional Practice Problems Chapter 3...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online