Extra_practice

# Extra_practice - Additional Practice Problems Chapter 3...

This preview shows pages 1–2. Sign up to view the full content.

Additional Practice Problems Chapter 3 Section 3.2.1 Basic rules of diﬁerentiation Find the derivative of the function by using the rules of diﬁerentiation. 1. f ( x ) = x 2 : 3 2. f ( r ) = …r 2 3. f ( x ) = 3 p x 4. f ( x ) = 7 x ¡ 12 5. f ( t ) = 2 3 t 3 = 2 6. f ( u ) = 2 p u 7. f ( x ) = ¡ 2 x 3 + 3 x 2 ¡ x ¡ 25 8. f ( x ) = 0 : 002 x 4 +0 : 03 x 3 ¡ 0 : 1 x 2 +17 9. f ( t ) = x 3 ¡ 4 x 2 + 3 x 10. f ( x ) = 4 x 4 ¡ 3 x 3 + 2 x 11. f ( s ) = 2 s 2 ¡ 3 s 1 = 3 12. f ( x ) = 4 x 5 = 4 + 2 x 3 = 2 + 4 p x ¡ x ln2 Section 3.2.2 The Product and Quotient Rules Diﬁerentiate the given functions. 13. f ( x ) = (3 x +1)( x 2 ¡ 2) 14. f ( x ) = ( x 3 ¡ 1)( x 2 +2 x ) 15. f ( x ) = (5 x 2 +1)(2 p x ¡ 1) 16. f ( x ) = x 3 e x 17. f ( x ) = x 2 ln x 18. f ( x ) = e x ln x 19. f ( x ) = x ¡ 1 2 x + 1 20. f ( t ) = t 2 ¡ 4 t + 1 21. f ( x ) = x 2 + 2 x 2 + x + 1 22. f ( x ) = 2 e x x 23. f ( x ) = e x ¡ 1 e x + 1 24. f ( x ) = 2 ln x x Section 3.2.3 The Chain Rule Find the derivative of the given function. 25. f ( x ) = (2 x ¡ x 2 ) 3 26. f ( x ) = (3 x + 1) ¡ 2 27. f ( x ) = ( x 2 ¡ 4) 3 = 2 28. f ( x ) = p 4 x + 5 29. f ( x ) = 1 p 2 x ¡ 3 30. f ( u ) = ( u ¡ 1 ¡ u ¡ 2 ) 3 31. f ( x ) = ( x ¡ 1) 2 (2 x + 1) 4 32. f ( x ) = ± x + 3 x ¡ 2 3 33. f ( t ) = ± t 2 t + 1 3 = 2 34. f ( x ) = x 2 ( x 2 ¡ 1) 4 35. f ( x ) = 3 e ¡ 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 3

Extra_practice - Additional Practice Problems Chapter 3...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online