1-8 - CHAPTER 1 Introduction This chapter provides a brief...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
CHAPTER 1 Introduction This chapter provides a brief history of the development of VHDL and describes the major capabilities that differentiate it from other hardware description languages. The chapter also explains the concept of an entity. 1.1 What Is VHDL? VHDL is an acronym for VHSlC Hardware Description Language (VHSIC is an acronym for Very High Speed Integrated Circuits). It is a hardware description language that can be used to model a digital system at many levels of abstraction ranging from the algorithmic level to the gate level. The complexity of the digital system being modeled could vary from that of a simple gate to a complete digital electronic system, or anything in between. The digital system can also be described hierarchically. Timing can also be explicitly modeled in the same description. The VHDL language can be regarded as an integrated amalgamation of the following languages: sequential language + concurrent language + net-list language + timing specifications + waveform generation language => VHDL Therefore, the language has constructs that enable you to express the concurrent or sequential behavior of a digital system with or without timing. It also allows you to model the system as an interconnection of components. Test waveforms can also be generated using the same constructs. All the above constructs may be combined to provide a comprehensive description of the system in a single model. The language not only defines the syntax but also defines very clear simulation semantics for each language construct. Therefore, models written in this language can be verified using a VHDL simulator. It is a strongly typed language and is often verbose to write. It inherits many of its features, especially the sequential language part, from the Ada programming language. Because VHDL provides an extensive range of modeling capabilities, it is often difficult to understand. Fortunately, it is possible to quickly assimilate a core subset of the language that is both easy and simple to understand without learning the more complex features. This subset is usually sufficient to model most applications. The complete language, however, has sufficient power to capture the descriptions of the most complex chips to a complete electronic system. (Ada is a registered trademark of the U.S. Government, Ada Joint Program Office) 1.2 History The requirements for the language were first generated in 1981 under the VHSIC program. In this program, a number of U.S. companies were involved in designing VHSIC chips for the Department of Defense (DoD). At that time, most of the companies were using different hardware description languages to describe and develop their integrated circuits. As a result, different vendors could not effectively exchange designs with one another. Also, different vendors provided DoD with descriptions of their chips in different hardware description languages. Reprocurement and reuse was also a big issue. Thus, a need for a standardized hardware description language for
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 77

1-8 - CHAPTER 1 Introduction This chapter provides a brief...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online