This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Let p be a point of a surface M , T be a geodesic triangle which contains p , and α , β , γ be the angles of T . Show that K ( p ) = lim T → p α + β + γπ Area ( T ) . In particular, note that the above proves Gauss’s Theorema Egregium. 1 Last revised: December 8, 2004 1 Exercise 8. Show that the sum of the angles of a geodesic triangle on a surface of positive curvature is more than π , and on a surface of negative curvature is less than π . Exercise 9. Show that on a simply connected surface of negative curvature two geodesics emanating from the same point will never meet. Exercise 10. Let M be a surface homeomorphic to a sphere in R 3 , and let Γ ⊂ M be a closed geodesic. Show that each of the two regions bounded by Γ have equal areas under the Gauss map. Exercise 11. Compute the area of the pseudosphere, i.e. the surface of revolution obtained by rotating a tractrix. 2...
View
Full
Document
This note was uploaded on 08/25/2011 for the course MATH 6456 taught by Professor Staff during the Spring '08 term at Georgia Tech.
 Spring '08
 Staff
 Math, Geometry

Click to edit the document details