class05

class05 - DataMining: ConceptsandTechniques Chapter3...

Info iconThis preview shows pages 1–8. Sign up to view the full content.

View Full Document Right Arrow Icon
August 29, 2011 Data Mining: Concepts and Techniques 1 Data Mining:     Concepts and Techniques   — Chapter 3 — Jiawei Han Department of Computer Science  University of Illinois at Urbana-Champaign www.cs.uiuc.edu/~hanj ©2006 Jiawei Han and Micheline Kamber, All rights reserved
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
August 29, 2011 Data Mining: Concepts and Techniques 2 Chapter 3: Data Warehousing and  OLAP Technology: An Overview What is a data warehouse?  A multi-dimensional data model Data warehouse architecture Data warehouse implementation From data warehousing to data mining
Background image of page 2
August 29, 2011 Data Mining: Concepts and Techniques 3 What is Data Warehouse? Defined in many different ways, but not rigorously. A decision support database that is maintained  separately  from  the organization’s operational database Support  information processing  by providing a solid platform of  consolidated, historical data for analysis. “A data warehouse is a   subject-oriented ,  integrated time-variant and  nonvolatile   collection of data in support of management’s  decision-making process.”—W. H. Inmon Data warehousing: The process of constructing and using data warehouses
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
August 29, 2011 Data Mining: Concepts and Techniques 4 Data Warehouse—Subject-Oriented Organized around major subjects, such as  customer,  product, sales Focusing on the modeling and analysis of data for  decision makers, not on daily operations or transaction  processing Provide  a simple and concise  view around particular  subject issues by  excluding data that are not useful in the  decision support process
Background image of page 4
August 29, 2011 Data Mining: Concepts and Techniques 5 Data Warehouse—Integrated Constructed by integrating multiple, heterogeneous data  sources relational databases, flat files, on-line transaction  records Data cleaning and data integration techniques are  applied. Ensure consistency in naming conventions, encoding  structures, attribute measures, etc. among different  data sources E.g., Hotel price: currency, tax, breakfast covered, etc. When data is moved to the warehouse, it is  converted.  
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
August 29, 2011 Data Mining: Concepts and Techniques 6 Data Warehouse—Time Variant The time horizon for the data warehouse is significantly  longer than that of operational systems Operational database: current value data Data warehouse data: provide information from a  historical perspective (e.g., past 5-10 years) Every key structure in the data warehouse Contains an element of time, explicitly or implicitly But the key of operational data may or may not  contain “time element”
Background image of page 6
August 29, 2011 Data Mining: Concepts and Techniques 7
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 8
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 52

class05 - DataMining: ConceptsandTechniques Chapter3...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online