phase2average

# phase2average - function = phase2average Anirban Chaudhuri...

This preview shows pages 1–2. Sign up to view the full content.

function[] = phase2average() f % Anirban Chaudhuri % Aerospace structures % Project Phase 1 clear all; close all; clc; c % Change according to UFID F = 0; % UFID first digit L = 5; % UFID last digit L % Given Parameters Wg = 350000+1000*F; % Gross weight of airplane (lb) b = 1490+10*L; % Wing-box span (in) S = 3129; % Wing gross area (sq ft) Croot = 337.25; % Wing-root chord (in) Ctip = 90; % Wing-tip chord (in) Ar = 9.3; % Aspect ratio delta = pi/6; % Wing sweep angle (=30 deg) (rad) d rho = 0.00237; % Air density (lb-s^2/ft^4) Ve = 363.8; % Equivalent aircraft velocity (knots) Ude = 66; % Derived equivalent gust velocity (fps) g = 32.174; % Gravity (ft/s^2) M = 0.55; % Mach number Beta = sqrt(1-M^2); % Calculating load factor % Aircraft Lift Curve Slope Cl_alpha = 1.15*2*pi*Ar/(2 + (4 + Ar^2*Beta^2*(1 + (tan(delta)/Beta)^2))^0.5); % Wing Mean geometric chord (ft) c_bar = (2/3)*(Croot + Ctip - (Croot*Ctip/(Croot + Ctip)))*(1/12); c mu_g = 2*Wg/(rho*g*S*c_bar*Cl_alpha); Kg = 0.88*mu_g/(5.3 + mu_g);

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 08/27/2011 for the course AEROSPACE 3115C taught by Professor Bakcer during the Spring '10 term at University of Florida.

### Page1 / 2

phase2average - function = phase2average Anirban Chaudhuri...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online