Program_4_I - (************** Content-type:...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: (************** Content-type: application/mathematica ************** CreatedBy='Mathematica 5.0' Mathematica-Compatible Notebook This notebook can be used with any Mathematica-compatible application, such as Mathematica, MathReader or Publicon. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: email: [email protected] phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. *******************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 87306, 2234]*) (*NotebookOutlinePosition[ 88229, 2266]*) (* CellTagsIndexPosition[ 88185, 2262]*) (*WindowFrame->Normal*) Notebook[{ Cell[CellGroupData[{ Cell["\<\ \t\t\t\t\t\t (* VELOCITY AND ACCELERATION ANALYSIS *) (* Method I: Derivatives of the positions *) Apply [Clear, Names[\"Global`*\"] ] ; Off[General::spell]; Off[General::spell1]; AB=0.14; AC=0.06; AE=0.25; CD=0.15; n = 50 ; (* rpm *) \[Omega] = n*N[Pi]/30 ; (* rad/s *) (* Input data *) initdata = {\[Phi][t]->N[Pi]/6, \[Phi]'[t]->\[Omega], \[Phi]''[t]->0}; (* Position of joint A *) xA = yA = 0; (* Position of joint C *) xC = 0 ; yC = AC ; (* Position of joint E *) xE = 0 ; yE = -AE ; \"Joint B\" \"Position of joint B\" xb = AB Cos[ \[Phi][t]]; yb = AB Sin[ \[Phi][t]]; Print[\"xB[t] = \", xb]; Print[\"yB[t] = \", yb]; xBp=xb/.initdata; yBp=yb/.initdata; Print[\"xB = \",xBp, \" m\" ]; Print[\"yB = \",yBp, \" m\" ]; \"Linear velocity of joint B\" vBx = D[xb,t]; vBy = D[yb,t]; Print[\"xB'[t] = \", vBx]; Print[\"yB'[t] = \", vBy]; Print[\"xB' = \", vBx/.initdata, \" m/s\" ]; Print[\"yB' = \", vBy/.initdata, \" m/s\" ]; \"Linear acceleration of joint B\" aBx = D[vBx,t]; aBy = D[vBy,t]; Print[\"xB''[t] = \", aBx]; Print[\"yB''[t] = \", aBy]; Print[\"xB'' = \", aBx/.initdata, \" m/s^2\" ]; Print[\"yB'' = \", aBy/.initdata, \" m/s^2\" ]; Bdata={xB[t]\[Rule]xBp, yB[t]\[Rule]yBp, xB'[t]\[Rule]vBx/.initdata, yB'[t]\[Rule]vBy/.initdata, xB''[t]\[Rule]aBx/.initdata, yB''[t]\[Rule]aBy/.initdata}; \"Joint D\" \"Position of joint D\"...
View Full Document

This note was uploaded on 08/29/2011 for the course MECH 5710 taught by Professor Marghitu,d during the Summer '08 term at Auburn University.

Page1 / 40

Program_4_I - (************** Content-type:...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online