This preview shows pages 1–3. Sign up to view the full content.

(* R_RRT *) (* force analysis using dyad RRT *) Apply[Clear,Names["Global`*"]]; Off[General::spell]; Off[General::spell1]; (* Input data *) pi = N [ Pi ] ; n = 400; (* rpm *) omega = n pi/30 ; (* rad/s *) rule = {AB->0.18, BC->0.7, h->0.01, d->0.01, hSlider->0.02, wSlider->0.05, ro->8000, g->9.807, fe->1000., phi[t]->pi/4, phi'[t]->omega, phi''[t]->0} (* Position analysis *) (* Position of joint A *) xA = yA = 0 ; rA = { xA, yA, 0} ; (* Position, velocity and acceleration of joint B *) xB = AB Cos[phi[t]] ; yB = AB Sin[phi[t]] ; rB = { xB, yB, 0} ; vB = D[rB,t] ; aB = D[D[rB,t],t] ; (* Angular velocity and acceleration of the link 1 *) omega1 = {0, 0, omega} ; alpha1 = {0, 0, phi''[t]} ; (* Angular velocity and acceleration of the link 2 and 3 *) yC=0; xC=xB+Sqrt[BC^2-(yC-yB)^2]; (* Position of joint C *) rC = { xC, yC, 0} ; mBC = ( yB - yC ) / ( xB - xC ) ; phi2 = ArcTan[mBC]; omega2 = {0, 0, D[phi2,t]}; alpha2 = {0, 0, D[D[phi2,t],t]}; phi3=0; alpha3={0,0,0}; rC1 = rB/2 ; vC1 = vB/2 ; aC1 = aB/2 ; rC2 = (rB+rC)/2; vC2 = D[rC2,t]; aC2 = D[vC2,t]; rC3 = rC; vC3 = D[rC3,t]; aC3 = D[vC3,t] ; pxB=xB/.rule; R_RRT_Dyad_02.nb 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
pyB=yB/.rule; pxC=xC/.rule; pyC=yC/.rule; Print["AC1=",rC1/.rule,"[m]; AB=",rB/.rule,"[m]"]; Print["AC2=",rC2/.rule,"[m]; AC3=AC=",rC3/.rule,"[m]"];
This is the end of the preview. Sign up to access the rest of the document.