{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# R_RTRfbd - force_half2S.nb 1 Force analysis via FBD of...

This preview shows pages 1–3. Sign up to view the full content.

" Force analysis via FBD of individual links " Apply [Clear, Names["Global`*"] ] ; Off[General::spell]; Off[General::spell1]; (* Input data *) pi = N [ Pi ] ; n = 30 pi; (* rpm *) omega = n pi/30 ; (* rad/s *) rule = {AB->0.14, AC->0.06, CF->0.2, h->0.01, d->0.01, hSlider->0.02, wSlider->0.05, ro->8000, g->9.807, Me->1000., phi[t]->pi/3, phi'[t]->omega, phi''[t]->0} (* Position analysis *) (* Position of joint A *) xA = yA = 0 ; rA = { xA, yA, 0} ; (* Position of joint C *) xC = 0 ; yC = AC ; rC = { xC, yC, 0} ; (* Position, velocity and acceleration of joint B *) xB = AB Cos[phi[t]] ; yB = AB Sin[phi[t]] ; rB = { xB, yB, 0} ; vB = D[rB,t] ; aB = D[D[rB,t],t] ; (* Angular velocity and acceleration of the link 1 *) omega1 = {0, 0, omega} ; alpha1 = {0, 0, phi''[t]} ; (* Angular velocity and acceleration of the link 2 and 3 *) mBC = ( yB - yC ) / ( xB - xC ) ; phi2 = ArcTan[mBC]; omega2 = {0, 0, D[phi2,t]}; alpha2 = {0, 0, D[D[phi2,t],t]}; phi3=phi2; alpha3=alpha2; (*Position, velocity and acceleration of center of mass of link 1 *) rC1 = rB/2 ; vC1 = vB/2 ; aC1 = aB/2 ; (*Position, velocity and acceleration of center of mass of link 2 *) rC2 = rB ; vC2 = vB ; aC2 = aB ; (*Position, velocity and acceleration of center of mass of link 3 *) xC3 = xC + CF/2 Cos[phi3] ; yC3 = yC + CF/2 Sin[phi3] ; rC3 = { xC3 , yC3 , 0 } ; force_half2S.nb 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
rC3 = { xC3 , yC3 , 0 } ; vC3 = D[rC3,t] ; aC3 = D[D[rC3,t],t] ; pxB=xB/.rule; pyB=yB/.rule; pxC=xC/.rule; pyC=yC/.rule; pxF=(xC+CF Cos[phi3])/.rule; pyF=(yC+CF Sin[phi3])/.rule; Print["rB = {xB, yB, 0} = ",rB/.rule," [m]"]; Print["rC1 = {xC1, yC1, 0} = ",rC1/.rule," [m]"]; Print["rC = {xC, yC, 0} = ",rC/.rule," [m]"]; Print["rF = {xF, yF, 0} = ",{pxF,pyF,0}," [m]"]; Print["rC3 = {xC3, yC3, 0} = ",rC3/.rule," [m]"]; markers= Table[{Point[{0,0}],Point[{pxB,pyB}],Point[{pxC,pyC}], Point[{pxF,pyF}]}]; name= Table[{Text["A",{0,0},{1,1}],Text["B",{pxB,pyB},{-.5,-1.5}], Text["C",{pxC,pyC},{1,1}],Text["F",{pxF,pyF},{1,0}]}]; graph[increment]=
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}