SASexample1 - SAS example 1 data bloodp; input id sbp...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
SAS example 1 data bloodp; input id sbp age; datalines ; 1 144 39 2 220 47 3 138 45 4 145 47 5 162 65 6 142 46 7 170 67 8 124 42 9 158 67 10 154 56 11 162 64 12 150 56 13 140 59 14 110 34 15 128 42 16 130 48 17 135 45 18 114 17 19 116 20 20 124 19 21 136 36 22 142 50 23 120 39 24 120 21 25 160 44 26 158 53 27 144 63 28 130 29 29 125 25 30 175 69 ; option linesize= 64 pagesize= 55 ; proc print data =bloodp; title 'Example Blood Presure' ; run ; proc reg data =bloodp; model sbp = age; output out =new p =yhat student =resid L95M=lm U95M=um L95=lp U95=up; run ; proc print data =new; proc plot data =new; plot sbp*age = '*' yhat*age= '+' lm*age= '#' um*age= '#' lp*age= '@' up*age= '@' / overlay ; title 'Blood presure' ; run ;
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
proc plot data =new; plot sbp*yhat; title 'Checking Y vs Y-hat' ; plot resid*yhat; title 'Checking Studentised residuals vs Y-hat' ; plot resid*age; title 'Checking Studentised residuals vs age' ; run ; proc univariate normal plot data =new; var resid; title 'Model checking: Normal test and plot' ; run ; Example Blood Presure 67
Background image of page 2
10:43 Monday, January 22, 2001 Obs id sbp age 1 1 144 39 2 2 220 47 3 3 138 45 4 4 145 47 5 5 162 65 6 6 142 46 7 7 170 67 8 8 124 42 9 9 158 67 10 10 154 56 11 11 162 64 12 12 150 56 13 13 140 59 14 14 110 34 15 15 128 42 16 16 130 48 17 17 135 45 18 18 114 17 19 19 116 20 20 20 124 19 21 21 136 36 22 22 142 50 23 23 120 39 24 24 120 21 25 25 160 44 26 26 158 53 27 27 144 63 28 28 130 29 29 29 125 25 30 30 175 69
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Example Blood Presure 68 10:43 Monday, January 22, 2001 The REG Procedure Model: MODEL1 Dependent Variable: sbp Analysis of Variance Sum of Mean Source DF Squares Square F Value Model 1 6394.02269 6394.02269 21.33 Error 28 8393.44398 299.76586 Corrected Total 29 14787 Analysis of Variance Source Pr > F Model <.0001 Error Corrected Total Root MSE 17.31375 R-Square 0.4324 Dependent Mean 142.53333 Adj R-Sq 0.4121 Coeff Var 12.14716 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 98.71472 10.00047 9.87 <.0001 age 1 0.97087 0.21022 4.62 <.0001
Background image of page 4
Example Blood Presure 69 10:43 Monday, January 22, 2001
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 6
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 08/30/2011 for the course STA 4164 taught by Professor Staff during the Spring '08 term at University of Central Florida.

Page1 / 12

SASexample1 - SAS example 1 data bloodp; input id sbp...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online