Umahinieseproject2

# Umahinieseproject2 - Iniese Bernard Umah MA 280 Mathlab...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Iniese Bernard Umah MA 280 Mathlab Assignment #2 Prof Decir A) syms t ezplot3(t*cos(t), t*sin(t), t, [-4 4]) x = t c os (t ), y = t s in (t ), z = t 4 2 z 0 -2 -4 2 4 0 2 0 -2 -2 y -4 -4 x B) syms t real; r = [t*cos(t), t*sin(t), t]; /* rp = velocity */ rp = diff(r) rp = [ cos(t) - t*sin(t), sin(t) + t*cos(t), 1] % rs = speed % rs = sqrt(dot(rp, rp)) rs = (t^2 + 2)^(1/2) /* ra = acceleration */ ra = diff(rp) ra = Iniese Bernard Umah MA 280 Mathlab Assignment #2 Prof Decir [ - 2*sin(t) - t*cos(t), 2*cos(t) - t*sin(t), 0] C) T = rp/rs T= [ (cos(t) - t*sin(t))/(t^2 + 2)^(1/2), (sin(t) + t*cos(t))/(t^2 + 2)^(1/2), 1/(t^2 + 2)^(1/2)] DT = diff(T) DT = [ - (2*sin(t) + t*cos(t))/(t^2 + 2)^(1/2) - (t*(cos(t) - t*sin(t)))/ (t^2 + 2)^(3/2), (2*cos(t) - t*sin(t))/(t^2 + 2)^(1/2) - (t*(sin(t) + t*cos(t)))/(t^2 + 2)^(3/2), -t/(t^2 + 2)^(3/2)] K= sqrt(dot(DT,DT))/rs K= (t^4 + 5*t^2 + 8)^(1/2)/(t^2 + 2)^(3/2) D) ezplot(K) (t 4 + 5 t 2 + 8 )1 /2 /(t 2 + 2 )3 /2 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 -6 E) -4 -2 0 t 2 4 6 Iniese Bernard Umah MA 280 Mathlab Assignment #2 Prof Decir UT = rp/rs UT = [ (cos(t) - t*sin(t))/(t^2 + 2)^(1/2), (sin(t) + t*cos(t))/(t^2 + 2)^(1/2), 1/(t^2 + 2)^(1/2)] DUT = diff(UT) /*unit tangent vector*/ DUT = [ - (2*sin(t) + t*cos(t))/(t^2 + 2)^(1/2) - (t*(cos(t) - t*sin(t)))/ (t^2 + 2)^(3/2), (2*cos(t) - t*sin(t))/(t^2 + 2)^(1/2) - (t*(sin(t) + t*cos(t)))/(t^2 + 2)^(3/2), -t/(t^2 + 2)^(3/2)] UN = (DUT)/sqrt(dot(DUT, DUT)) /*unit normal vector*/ UN = [ -((t^2 + 2)*((2*sin(t) + t*cos(t))/(t^2 + 2)^(1/2) + (t*(cos(t) t*sin(t)))/(t^2 + 2)^(3/2)))/(t^4 + 5*t^2 + 8)^(1/2), ((t^2 + 2)*((2*cos(t) - t*sin(t))/(t^2 + 2)^(1/2) - (t*(sin(t) + t*cos(t)))/ (t^2 + 2)^(3/2)))/(t^4 + 5*t^2 + 8)^(1/2), -t/((t^2 + 2)^(1/2)*(t^4 + 5*t^2 + 8)^(1/2))] F) aT =diff( rs) /* tangential component of acceleration*/ aT = t/(t^2 + 2)^(1/2) /* Normal component acceleration*/ aN = sqrt((sqrt(dot(ra, ra)))^2-(aT)^2) aN = (t^2 - t^2/(t^2 + 2) + 4)^(1/2) simplify(aN) ans = (t^4 + 5*t^2 + 8)^(1/2)/(t^2 + 2)^(1/2) ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 3

Umahinieseproject2 - Iniese Bernard Umah MA 280 Mathlab...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online