Unformatted text preview: idl‘il— BC.) 1. A particle moves on the x~axis so that its velocity at any time t 2 O is given
by v(t) 2 12:2 — 361 + 15. At t ﬂ 1, the particle is at the origin.
(a) Find the position x0) of the particle at any time t 2 0.
(1)) Find all values of z for which the particie is at rest.
(c) Find the maximum veiocity of the particle for 0 s I s 2.
(d) Find the totai distance traveled by the particle from t = 0 to t = 2. a.) x(t)= firott = Litswl‘zt‘iigt +0.
x(n)=o = 448+15+¢ => C.="i X('i:)= 4t3—Iet‘+15t«i b3 ParHole is at rest when vtt)=o
we): 3 (4151— igt +5): 3(Qtwl) (at 5) V(‘t)=0 when ”i:=.“i) g”: a) v’tt) = 3(8t12)$ ir’tt)=o when 22.:7 oﬁtiﬂ. v‘tt): — + t
0 g: :1 V(%) iSMO—bsoi.mﬁia, $ V(o) w v(;;_) is M 0.me MK.
v(o)=155 v(a\=3(n, 344.5): q 0 ole 13M dist. z i 54% Mitzi3&1: +is)alt) + [filatiBLtHSMtI ’4. 1991 BC] ...
View
Full Document
 Fall '08
 ANY

Click to edit the document details