Unformatted text preview: 1994~ 98>! 1. Let f be the function given by f(x) = 3x4 + x3 — 21x3.
(a) Write an equation of the line tangent to the graph of f at the point (2, —28). (b) Find the absolute minimum value of f. Show the analysis that leads to your conclusion. (0) Find the x—coordinate of each point of inﬂection on the graph of f. Show the analysis that leads to
your conclusion. .5 a.) Eq'uaﬁen oi; innaen'talfne 3 431—38 == mifx ‘2‘) when: m: ?’(:2)
«PK/1): {$113+ 31 4;): 5 #‘(2)=%+/a—W=R‘+
lg+28=a4mal or = mix—"ﬂ
L________,.___.________L .J byway auwﬁ aunt) = 3x(¥x7l(x+~1‘)
‘fYx) = 0 when? amigo!) FIT/1+” ‘92 Camildd‘es 4w «seal. m'm. care at 13—; M at x = 7/4..
41“,.) = 4% M4 MW) : ao. 8% #_Hm*md»mﬂ_n W LL13 An__a~.bSOL4+'e minimum 0'; “3‘0 e) 'F'Lfizi =3&%;+Ll*¥a =' é(é¥+7)(1~l}
'Fuﬁ‘ﬁ; =0 when” x. = ”7/9 owl l ‘  ‘ ‘7
4 changes dlr'eCT'lcn o1" mutt/d3 at )C= /a~ and at x.=l "F‘ has Poi4+9 D'F 'MCleci'a'on at I. =q7/b and of, 1:] 1994 A181 ...
View
Full Document
 Fall '08
 ANY

Click to edit the document details