NonlinearContact

# NonlinearContact - if nargin == 0 nu = 0.45 d = 0.1 eo =...

This preview shows pages 1–2. Sign up to view the full content.

Sheet1 Page 1 function [s,E,errors] = NonlinearContact(nu,d,eo,so,n,h) % Function NonlinearContact % Calculate the value of stress s and Young's modulus E that % match equations provuded by a contact model and a nonlinear % polyethylene material model. % % Usage: [s,E,errors] = NonlinearContact(nu,d,eo,so,n) % % Inputs: nu = Poisson's ratio (0.45) % d = interpenetration (0.001) % eo = reference strain (0.06) % so = reference stress (18.4 MPa) % n = material model exponent (3) % h = polyethylene thickness (8 mm) % % Outputs: s = contact stress % E = corresponding Young's modulus % errors = errors in the two zero equations % Define global variables to be accessed by ZeroFunc global nu d eo so n h % Check number of input arguments. If 0, then use default values

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: if nargin == 0 nu = 0.45 d = 0.1 eo = 0.06 so = 18.4 n = 3 h = 8 elseif nargin ~= 5 disp('Incorrect number of input arguments.') disp('Terminating program.') return end % Define initial values of s and E s0 = 5 E0 = 100 x0 = [s0 E0] % Solve two nonlinear equations in two unknowns options = optimset('Display','iter') x = fsolve(@ZeroFunc,x0,options) errors = ZeroFunc(x) s = x(1,1) E = x(2,1) %-------------------------------------------------------------------------function errors = ZeroFunc(x) Sheet1 Page 2 global nu d eo so n h s = x(1,1) E = x(2,1) errors = zeros(2,1) errors(1,1) = ((1-nu)/((1-2*nu)*(1+nu)))*(E*d/h)-s errors(2,1) = (0.5*eo/so)*(1+n*(s/so)^(n-1))*E-1...
View Full Document

## This note was uploaded on 09/05/2011 for the course EGM 3344 taught by Professor Raphaelhaftka during the Spring '09 term at University of Florida.

### Page1 / 2

NonlinearContact - if nargin == 0 nu = 0.45 d = 0.1 eo =...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online