skydiver_error

# skydiver_error - for i = 1:4 Determine time vector and...

This preview shows pages 1–2. Sign up to view the full content.

Sheet1 Page 1 function skydiver_error(m,g,c) % Function to calculate true and approximate percent % error for skydiver falling speed at t = 10 sec using % four different time increments % % Inputs: mass m (kg) % gravity g (m/s^2) % drag coefficient c (kg/m) % time increment dt (s) % All inputs are passed into the function. % % Outputs: final falling speed v (m/s) % true percent error et (%) % approximate percent error ea (%) % Assign 4 dt values dt = [2 1 0.5 0.25]' % Allocate memory for approximate solutions vapprox = zeros(4,1) % Calculate analytical solution at t = 10 sec vtrue = sqrt(m*g/c)*tanh(sqrt(g*c/m)*10) % Allocate memory for true and approximate percent errors et = zeros(4,1) ea = zeros(4,1) % Loop through dt values and calculate the true percent % and approximate percent error in each case

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: for i = 1:4 % Determine time vector and number of points t = [0:dt(i,1):10]' npts = size(t,1) v = 0 % Use Euler's method to generate approximate solution for j = 1:npts-1 % Update v dvdt = g-(c/m)*v^2 v = v + dvdt*dt(i,1) end % Save approximate solution vapprox(i,1) = v % Calculate true and approximate percent errors et(i,1) = abs((vapprox(i,1)-vtrue)/vtrue)*100 if i == 1 ea(i,1) = NaN else Sheet1 Page 2 ea(i,1) = abs((vapprox(i-1,1)-vapprox(i,1))/vapprox(i,1))*100 end end % Output results in a formatted table vtrue = vtrue*ones(4,1) outputs = [dt vtrue vapprox et ea] fprintf('\n dt vtrue vapprox et ea\n') fprintf('%4.2f\t %5.2f\t %5.2f\t %5.3f\t %5.3f\n', outputs') fprintf('\n')...
View Full Document

## This note was uploaded on 09/05/2011 for the course EGM 3344 taught by Professor Raphaelhaftka during the Spring '09 term at University of Florida.

### Page1 / 2

skydiver_error - for i = 1:4 Determine time vector and...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online