Chapter 7 - SECTION 7.2 1. t By definition, we have L { t }...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: SECTION 7.2 1. t By definition, we have L { t } = Z e- st t dt L { t } = lim u- Z u e- st t dt. Using integration by parts L { t } = lim u- [- ( t/s ) e- st | u + (1 /s ) lim u- Z u e- st dt ] L { t } = lim u- [- ( t/s ) e- st | u- (1 /s 2 ) e- st | u ] L { t } = lim u- [- ( u/s ) e- su- (1 /s 2 ) e- su + (1 /s 2 )] . We know lim u- e- su = 0 , s > 0 and using LHospitals Rule lim u- ue- su = lim u- u e su = lim u- 1 se su = 0 , s > . Hence we have L { t } = (1 /s 2 ) , s > . 3. e 6 t By definition, we have L { e 6 t } = Z e- st e 6 t dt = Z e (6- s ) t dt L { e 6 t } = lim u- Z u e (6- s ) t dt L { e 6 t } = lim u- 1 6- s e (6- s ) t | u 1 L { e 6 t } = lim u- 1 6- s ( e (6- s ) u- 1) L { e 6 t } = 1 s- 6 , s > 6 . 5. cos 2 t By definition, we have L { cos 2 t } = Z e- st cos 2 t dt L { cos 2 t } = lim u- Z u e- st cos 2 t dt. Using integration by parts Z e- st cos 2 t dt = (1 / 2) e- st sin 2 t + Z ( s/ 2) e- st sin 2 t dt. Again applying integration by parts Z e- st cos 2 t dt = (1 / 2) e- st sin 2 t + ( s/ 2)[- (1 / 2) e- st cos 2 t- Z ( s/ 2) e- st cos 2 t dt ] Z e- st cos 2 t dt = (1 / 2) e- st sin 2 t- ( s/ 4) e- st cos 2 t- ( s 2 / 4) Z e- st cos 2 t dt ] (1 + s 2 / 4) Z e- st cos 2 t dt = (1 / 2) e- st sin 2 t- ( s/ 4) e- st cos 2 t 4 + s 2 4 Z e- st cos 2 t dt = (1 / 2) e- st sin 2 t- ( s/ 4) e- st cos 2 t Z e- st cos 2 t dt = 4 4 + s 2 [(1 / 2) e- st sin 2 t- ( s/ 4) e- st cos 2 t ] so that L { cos 2 t } = lim u- 4 4 + s 2 [(1 / 2) e- st sin 2 t- ( s/ 4) e- st cos 2 t ] | u L { cos 2 t } = lim u- 4 4 + s 2 [((1 / 2) e- su sin 2 u- ( s/ 4) e- su cos 2 u )- (- ( s/ 4))] L { cos 2 t } = 4 4 + s 2 s 4 = s s 2 + 4 , s > . 2 7. e 2 t cos 3 t By definition, we have L { e 2 t cos 3 t } = Z e- st e 2 t cos 3 t dt L { e 2 t cos 3 t } = lim u- Z u e (2- s ) t cos 3 t dt. Using integration by parts Z e (2- s ) t cos 3 t dt = 1 3 e (2- s ) t sin 3 t- Z 2- s 3 e (2- s ) t sin 3 t dt. Again applying integration by parts Z e (2- s ) t cos 3 t dt = 1 3 e (2- s ) t sin 3 t- 2- s 3 [- 1 3 e (2- s ) t cos 3 t + Z 2- s 3 e (2- s ) t cos 3 t dt ] Z e (2- s ) t cos 3 t dt = 1 3 e (2- s ) t sin 3 t + 2- s 9 e (2- s ) t cos 3 t- ( 2- s 3 ) 2 Z e (2- s ) t cos 3 t dt (1 + ( 2- s 3 ) 2 ) Z e (2- s ) t cos 3 t dt = 1 3 e (2- s ) t sin 3 t + 2- s 9 e (2- s ) t cos 3 t 9 + ( s- 2) 2 9 Z e (2- s ) t cos 3 t dt = 1 3 e (2- s ) t sin 3 t + 2- s 9 e (2- s ) t cos 3 t Z e (2- s ) t cos 3 t dt = 3 9 + ( s- 2) 2 e (2- s ) t sin 3 t + 2- s 9 + ( s- 2) 2 e (2- s ) t cos 3 t so that L { e 2 t cos 3 t } = lim u- 3 9 + ( s- 2) 2 e (2- s ) t sin 3 t + 2- s 9 + ( s- 2) 2 e (2- s ) t cos 3 t | u L { e 2 t cos 3 t } = lim u- ( 3 9 + ( s- 2) 2 e (2- s ) u sin 3 u + 2- s 9 + ( s- 2) 2 e (2- s ) u cos 3 u )- 2- s 9 + ( s- 2) 2 L { e 2 t cos 3 t } = s- 2 9 + ( s- 2) 2 , s > 2 ....
View Full Document

This note was uploaded on 09/05/2011 for the course MAP 2302 taught by Professor Tuncer during the Summer '08 term at University of Florida.

Page1 / 68

Chapter 7 - SECTION 7.2 1. t By definition, we have L { t }...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online