{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

review2

# review2 - Practice Problems for Midterm II MATH 10B 2010...

This preview shows pages 1–2. Sign up to view the full content.

Practice Problems for Midterm II, MATH 10 B, 2010 Spring 1 . Evaluate the following integrals. When doing so, state what method you are using (for example, substitution, integration by parts, partial fractions) and show all your work. (a) R ( ln z ) 2 z dz (b) R x sin ( x 2 ) dx (c) R 1 0 x 1 - x 2 dx (d) R pe 0.1 p dp (e) R cos ( x ) sin 2 ( x ) dx (f) R 1 ( x - 2 )( x - 5 ) dx (g) R 1 v 2 + 1 dv (h) R u 1 + u 2 du (i) R 10 1 xe x dx (j) R x 2 x 2 - 1 dx (k) R cos y y dy (l) R sin ( ln x ) 1 x dx (m) R sin ( 2 x ) e 3 x dx (n) R 1 + u 2 du (o) R 1 0 p 1 - y 2 dy 2 . (a) Use the midpoint rule with 5 subdivisions to approximate R 2 1 e - x 2 /2 dx . (Just set up the Rie- mann sum. Do not evaluate). (b) Use the trapezoidal rule with 5 subdivisions to approximate R 2 1 e - x 2 /2 dx . (Just set up the Riemann sum. Do not evaluate). 3 . Evaluate the following improper integrals, if convergent, otherwise explain why it is divergent. (a) Z 1 e - x dx (b) Z 1 e - x 2 dx (c) Z 1 1 x dx (d) Z 1 0 1 x dx 4 . Determine whether the area of the region S = ( x , y ) | 3 x 4, 0 y 1 4 - x is finite, and find the area if it is finite.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}