DW Lecture I

DW Lecture I - Datawarehousing and...

Info iconThis preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
By Dr. Atanu Rakshit Data warehousing   and  Business Intelligence using SAS (Lecture I)
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
2 Course Overview The course: what and how 0. Introduction: The Past and The  Problem I. Data Warehousing II. Decision Support and OLAP III. Data Mining IV. Usage of SAS for DW and DM V.  Business Intelligence and its use VI. Looking Ahead
Background image of page 2
3 Books & References Modern  Data  Warehousing,  Mining  and  Visualization,  by  George  M.  Marakas,  Printice  Hall The  Data  Warehouse  Toolkit  by  Ralph  Kimball  and M Ross, 2002 Wiley Building  the  Data  Warehouse,  by  W.H.  Inmon,  2002 Wiley Data Warehousing in the real world, by Sam  Anahory & Dennis Murray, Pearson Education  Principles of Data Mining, by David Hand, Heikki  Mannila, Padhraic Smyth Building Data Mining Application for CRM, by  Alex Berson, Stephen Smith and Kurt Thearling
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
4 Introduction The Past and The Problem
Background image of page 4
Dr. Atanu Rakshit The Past and The Problem Only had scattered transactional systems in  the organization – data spread among  different systems Transactional systems were not designed for  decision support analysis Data constantly changes on transactional  systems Lack of historical data Often resources were taxed with both needs  on the same systems
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Dr. Atanu Rakshit The Past and The Problem Operational databases are designed to  keep transactions from daily operations.  It  is optimized to efficiently update or create  individual records A database for analysis on the other hand  needs to be geared toward flexible  requests or queries (Ad hoc, statistical  analysis)
Background image of page 6
7 Problem: Data Management in Large  Enterprises Vertical fragmentation of informational  systems (vertical stove pipes) Result of application (user)-driven  development of operational systems Sales Administration Finance Manufacturing ... Sales Planning Stock Mgmt ... Suppliers ... Debt Mgmt Num. Control ... Inventory
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
8 Problem: Heterogeneous Information Sources “Heterogeneities are  everywhere” Different interfaces Different data representations Duplicate and inconsistent information Personal Databases Digital Libraries Scientific Databases World Wide Web
Background image of page 8
9 Goal: Unified Access to Data Integration System Collects and combines information Provides integrated view, uniform user interface Supports sharing World Wide Web Digital Libraries Scientific Databases Personal Databases
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
10 Two Approaches: Query-Driven (Lazy) Warehouse (Eager) Source Source ?
Background image of page 10
Image of page 11
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 45

DW Lecture I - Datawarehousing and...

This preview shows document pages 1 - 11. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online