2 var regression-STUDENT version-sport

2 var - Model 1 1 x y= Reminder: sport 11 Intentionally left blank 2Slide#2 Obj100 Seeregressionoutput 3Slide#3 II Regression Tost

Info iconThis preview shows pages 1–14. Sign up to view the full content.

View Full Document Right Arrow Icon
Click to edit Master subtitle style 11 The Two-Variable Regression    Reminder: open OLS B-hat formulas example- sport.xls y =  α  +  β 1 x1 + 
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
2Slide #2 Intentionally left blank
Background image of page 2
3Slide #3 Do Large Market NBA Teams Make Higher Profits? See regression output. Obj10
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
4Slide #4 II. Regression To study the influence of advertising on profits, the  Celtics compiled the data in Table 1. This sample  is for each of the last five years. Ad expenditures  are in $100,000s  and profits are in millions of  dollars . Table 1.                                                                                                                     Year                                1        2      3      4      5
Background image of page 4
5Slide #5    Regression (cont.) Ad Expenditures (x)      2    3    4.5 5.5 7 Profit (y) 3    6    810     11  The Celtics need answers to these questions 1. Does advertising increase profit? advertising increase profit?
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
6Slide #6    Regression (cont.) 3. What will our profit be if we spend $800,000 on  advertising? 4. How much will we need to spend on ads to  generate $12,000,000 in profit?
Background image of page 6
7Slide #7   Regression (cont.) Surprisingly, one statistical decision-making  tool can provide answers to  all  of these  questions -- and more. The tool is called  regression analysis . Obj103
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
8Slide #8       Regression (cont.) A. Regression analysis is a statistical  technique  B. A ttempts to "explain" movements in one  variable, the  dependent variable  . . .
Background image of page 8
9Slide #9  Regression (cont.) C. as function of movements in a set of other  variables, the  independent variables  . . . D. through the quantification of one or more  equations.
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
10Slide #10  Regression (cont.) E. Two-variable model 1. Simplest of regression models y =  α  +  β x + “ 2.  “Model” is used to describe behavior of  variables; often an equation 3. Will cover a) Estimating it
Background image of page 10
11Slide #11 Who Uses This Northwestern Memorial Hospital, which has  the largest birthing facility in the Midwest,  uses a  simple regression model  to forecast  delivery volume based on previous delivery  volumes. (Source: Jerry Lassa,  Northwestern Memorial Hospital, Chicago,  IL.)
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
12Slide #12 Who Uses This IRI, the largest market research firm in the  United States uses  simple regression  on  adjusted weekly sales data to determine  baseline sales when there is no special  promotion. (Source: Doug Honnold, IRI,  Inc., Chicago, IL.)
Background image of page 12
13Slide #13 Regression (cont.) To use regression analysis for answering those  questions, the analyst needs to find  the line  which best fits the data .
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 14
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 09/09/2011 for the course ECON 6416 taught by Professor Richardhofler during the Fall '11 term at University of Central Florida.

Page1 / 147

2 var - Model 1 1 x y= Reminder: sport 11 Intentionally left blank 2Slide#2 Obj100 Seeregressionoutput 3Slide#3 II Regression Tost

This preview shows document pages 1 - 14. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online