1Topic #2-Basic Statistics-Part 2-sport

1Topic #2-Basic Statistics-Part 2-sport - Topic#2...

Info iconThis preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
  1              Slide Topic #2    Basic Statistics – Part 2 Measures of Relative Location  Z-scores  Continuous Probability Distributions
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
  2              Slide
Background image of page 2
  3              Slide REVIEW: Binomial Probability Distribution What’s the probability of seeing x successes in the next n  experiments ? Probability that 2 of next 3 customers will buy? Probability that 5 of next 10 job applicants will be  hired? How do you identify a  binomial case? n  identical trials Two outcomes, success  and failure , on each trial
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
  4              Slide REVIEW: Binomial Probability Distribution Binomial Probability Function where: f ( x ) = the probability of  x  successes in  n  trials     n  = the number of trials     p  = the probability of success on any one trial Example :  Probability that 2 of next 3 customers will buy  when prob. of buying = 25%? value of n?
Background image of page 4
  5              Slide REVIEW: Poisson Probability Distribution What will be the number of occurrences over a specific  time or distance interval ? How many customers will walk up to one ATM in 2  minutes? How many repairs will be needed in 10 miles of  highway? How can you identify a Poisson case ? The probability of an occurrence for some interval of  time or distance
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
  6              Slide Poisson Probability Distribution Poisson Probability Function where: f(x)  = probability of  x  occurrences in an interval    μ   = mean number of occurrences in an interval      e  = 2.71828  Example :  What is the probability of 4 arrivals to an  emergency room in 30 minutes given that the average rate  is 3 per half-hour?
Background image of page 6
  7              Slide Form Your Team
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
  8              Slide Measures of Relative Location z-Scores The Empirical Rule NOTE: gives you an idea/sense of how values and  probabilities are spread over the normal distribution NOT  a substitute for the normal distribution table
Background image of page 8
  9              Slide z-Scores The z-score  is often called the standardized value. It denotes the number of standard deviations a data value  xi  is from the mean. A data value less than the sample mean  will have a  z-score less than zero . A data value greater than the sample mean  will have a z- score greater than zero . A data value equal to the sample mean  will have a   z-score  of zero.
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
  10              Slide z-Scores EXAMPLES Suppose     = .250 and s = .035  (batting averages) How many standard deviations above the mean is .285?  How many standard deviations below the mean is .215?
Background image of page 10
Image of page 11
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 97

1Topic #2-Basic Statistics-Part 2-sport - Topic#2...

This preview shows document pages 1 - 11. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online