This preview shows pages 1–8. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Physics 241 Lecture 12 Y. E. Kim September 30, 2010 Chapter 26, Section 3 Chapter 27, Sections 1  2 September 30, 2010 University Physics, Chapter 26 and 27 1 September 30, 2010 University Physics, Chapter 26 2 Chapter 26 Section 3 MultiLoop Circuits ¡ To analyze a multiloop circuit, identify all complete loops and all junction points in the circuit and DSSO\ .LUFKKRII·V Rules to these parts of the circuit separately ¡ Analyze the single loops in a multiloop circuit with .LUFKKRII·V /RRS 5XOH DQG WKH MXQFWLRQV ZLWK .LUFKKRII·V Junction Rule, and obtain a system of coupled equations in several unknown variables ¡ These coupled equations can be solved in several ways ¡ Solution with matrices and determinants ¡ Direct substitution September 30, 2010 University Physics, Chapter 26 3 ([DPSOH¡ .LUFKKRII·V 5XOHV ¢£¤ ¡ The circuit here has three resistors, R 1 , R 2 , and R 3 and two sources of emf, V emf,1 and V emf,2 ¡ This circuit cannot be resolved into simple series or parallel structures ¡ To analyze this circuit, we need to assign currents flowing through the resistors ¡ We can choose the directions of these currents arbitrarily September 30, 2010 University Physics, Chapter 26 4 ¡ At junction b the incoming current must equal the outgoing current ¡ At junction a we again equate the incoming current and the outgoing current ¡ But this equation gives us the same information as the previous equation! ¡ We need more information to determine the three currents ² 2 more independent equations ([DPSOH¡ .LUFKKRII·V /DZV ¢£¤ 2 1 3 i i i ¡ 1 3 2 i i i ¡ September 30, 2010 University Physics, Chapter 26 5 ¡ 7R JHW WKH RWKHU HTXDWLRQV ZH PXVW DSSO\ .LUFKKRII·V Loop Rule. ¡ This circuit has three loops. ¡ Left ¡ R 1 , R 2 , V emf,1 ¡ Right ¡ R 2 , R 3 , V emf,2 ¡ Outer ¡ R 1 , R 3 , V emf,1 , V emf,2 ([DPSOH¡ .LUFKKRII·V /DZV ¢£¤ September 30, 2010 University Physics, Chapter 26 6 ([DPSOH¡ .LUFKKRII·V /DZV ¢£¤ ¡ Going around the left loop counterclockwise starting at point b we get ¡ Going around the right loop clockwise starting at point b we get ¡ Going around the outer loop clockwise starting at point b we get ¡ But this equation gives us no new information! 1 1 ,1 2 2 1 1 ,1 2 2 0 e m f e m f i R V i R i R V i R ¡ ¡ ¡ ¢ £ £ 3 3 ,2 2 2 3 3 ,2 2 2 0 e m f e m f i R V i R i R V i R ¡ ¡ ¡ ¢ £ £ 3 3 ,2 ,1 1 1 e m f e m f i R V V i R ¡ ¡ £ £ September 30, 2010 University Physics, Chapter 26 7 ¡ We now have three equations ¡ And we have three unknowns i 1 , i 2 , and i 3 ¡ We can solve these three equations in a variety of ways ([DPSOH¡ .LUFKKRII·V /DZV ¢£¤ 1 3 2 i i i ¡ 1 1 ,1 2 2 e m f i R V i R ¡ ¡ 3 3 ,2 2 2 e m f i R V i R ¡ ¡ 2 3 , 1 2 , 2 1 1 2 1 3 2 3 3 , 1 1 , 2 2 1 2 1 3 2...
View
Full
Document
This note was uploaded on 09/09/2011 for the course PHYS 241 taught by Professor Wei during the Fall '08 term at Purdue.
 Fall '08
 Wei
 Physics

Click to edit the document details