Section 2.4 class notes_0

Section 2.4 class notes_0 - Section 2.4 Parallel and...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Section 2.4 Parallel and Perpendicular Lines Given any two distinct lines in the Cartesian plane, the two lines will either intersect or they will not. In this section, we will investigate the nature of two lines that do not intersect ( parallel lines ) and then discuss the special case of two lines that intersect at a right angle ( perpendicular lines ). These two cases are interesting because we need only know the slope of the two lines to determine whether or not the lines are parallel, perpendicular or neither. Objective 1: Understanding the Definition of Parallel Lines Two lines are parallel if they do not intersect, or in other words the lines do not share any common points. Since parallel lines do not intersect, the ratio of the vertical change (rise) to the horizontal change (run) of each line must be equivalent. In other words, parallel lines have the same slope. 1 l 2 l 1 riseof l 2 riseof l 1 run of l 2 run of l The ratios of the vertical rise to the horizontal run of two parallel lines are equal:...
View Full Document

Page1 / 3

Section 2.4 class notes_0 - Section 2.4 Parallel and...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online