midterm2_practice

# midterm2_practice - Sowwious W 2 NAME SECTION MATH 21-241...

This preview shows pages 1–7. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Sowwious W 2,. NAME: SECTION: MATH 21-241, MATRIX ALGEBRA Fall 2009 SECTION 1 (11:30—12:20) EXAM 2 TOtal: 100 points 0 You must show ALL work for full credit. 0 If you have any questions during the exam, please raise your hand. PROBLEM_ SCORE PROBLEM SCORE #1(20pts) #5(18pts) - #2 “0 9‘3) - 1. (20 pts) a) (3 pts) The system A13 = b has a solution if and only if b is orthogonal to which of the four fundamental spaces? bECU’Q :3 lo oﬂho%ond l1?- kit—WT) b) (3 pts) Is the projection matrix invertible? Why or why not? :P‘W was mum’s.- W“: P _ 1:99”‘w3e -. ’9“ ~—————-——— . . H: x {Pl P —-. C) (14 pts)'Il‘ue or false, justify your answer if false: i) (2 pts) If the vectors 3:1, ..., 53m span a subspace S, then dim 5' z m. Rim : Hug mid alw have tr la MWWM. ii) (2 pts) The intersection of two subspaces, of a vector space is empty. m: m m Vto'lvr rs m sum luloéfaee. iii) (2 pts) Ian: : Ay, then'x=y. ﬁg = +5110; A so. iv) (2 pts) The row space of A has a basis that can be computed by reducing A to echelon form. TM: _———_.., v) (2 pts) A plane in R3 is a two—dimensional subspace of R3. leis .. Onlxj plams - tlnnmglc HM vh‘cbah our and: new; 1 vi) (2 pts) R2 is a two-dimensional subspace of R3. 75FGHK: {R1 {S W 0L VLd‘orS UAW-h M- Comuvovwmf ho+ "HQ/Ye,- vii) (2 pts) If v; and '02 are independent vectors, then 1;; and '02 Orthogonal. Pam .' Jratua \n h A E) \/ :3" u C‘ I: \/ 2. (10 pts) Find a basis for the subspace of all vectors in R6 with \$1+I2=\$3+\$4Z\$5+\$5. K1;=—X2_+K3~H(L‘ 3 X6: Xa—qu—Xs'. K:- Liulia. Kat. XL“ X9. X5.) I\$(')C1+ 3(3'1' XL“. )(21 Kat 3(th Kg, K7) +Xq—x‘g) : fzc—MA. 0101010) + K3('{lol I 10.0;1) + (“LL 01 0; 4,010 + its—(Ot 0,0 to,“ —1) : -—— ' . .——_‘i_8 liq; OIQP(O)\ (Mott! 010t{-)1.€LOIOJMOH) 1-(010'0‘0?h_l)3. 3. (10 pts) What matrix P projects every point in R3 onto the line of intersection of the planes at + y + t = 0 and a: — t = 0? «fa-2+ 9‘ =6 {riﬂe} "ELL—1‘4) :3 Q = (’11-'711) m Q‘QT .‘ T 1 ‘ . F-Qra ,Iaa=[1w2u1[ﬂ]=1+qﬂzé . r 1 4. (10 pts) Find the pieces x? and In ifA : [ 0 0 J and a: = [ 3 J . 0 O 1 -“‘ - c . . c 0 0 in 314‘ am) Anemia) ll 'D-{mmPo H = Uh 0%) (“way—(l) =Ci(M—\)+O 2) qua:cl —)Cl=2—. —Q:I-C‘ :3 Q:C‘ 5. (18 pts) Find dimensions and bases for the four fundamental sub— spaces of ° BCUL) : {U.o.c.ol), (llama), (.b,2~.0fti)3 3 dim can: 3 '9 Pam) =. {Ham-5), (calla), (0.0.0.03 : sum 12mg. 9 MA) = {x [Ax =03 Gl—tllo-i—Sd :0 61+?Jo:o c: u, 2‘0 +Zc~r26\:0' “:3 unﬁt _O n- Who ‘ w LZ—b' =3 MUD I= {(-Uaibi -10. 0‘) \bglszj' : {M «Lip i1031b€ii33 Ewan-.K —ln-’h~!.c')7> 2 CHM tempt. ﬂan-.0- , 3Q-+z'o+ttd=0 =>cl=.o. : : o‘Ioli‘Oy‘Cf/ﬂﬂg :7.) BNCAT) = {Loioih‘033 ' 4 dim MW): 5,. I o o o q '0 Q20 ‘ Z 2 0 o 5 3 O 1-) Zanlozo =)\o:.o. o ‘L o o C 7 0 3 2. 0 L1 0 6. (12 pts) What is the matrix aSsociated to diﬁerentiation-on the space of polynomials P2 ? Find the nullspace and the column Space of the matrix and interpret them in terms of polynomials. "T'- 91 “’91 W2. « {111.ng Tm :oen (Ha-x 0%”:— O W B Tm =l-A‘HO-xﬂ A: 5x0 '24] ‘ .P') T'Ciljrlﬂ Gun : ammo)«cathﬂ-egtoa') \CaCautg, €537) . = 3L (Cybcﬂi C240; ER} '= 5L Quiran \CACseﬁZ3,_ 4- W i WWW“ Nut): {MAX =03". . . T .. ' 30: I C Nun —- {Mil-0.6) \CEUR3 i {a mgr-«2.3 4 Ccnﬁw EWM'QU' 7. (20 pts) (3.) (10 pts) Write the composite matrix (in the standard basis) of a counterclockwise rotation through 60°, followed by a reﬂection in the line y = 33. You should not multiply the matrices. Mus“) H (a (pm-5°) also?) me [_.__—._.J , _ 0 L '- £63655me 1 o ‘Cmus’o +mq§oﬁﬂm6° ammo Lsm ng" ways" 0 --| -s—m Li’s" jams" ﬁn 60° com? ’\ \x 0:“ cm soc ant/10° [to 60‘9 whee 0] . Ha qo" - 053cmO 3m 60" 06360" or [.0 l a [053600 -—meo°] r 1 0 blﬂeoo C6360” - b) (10 pts) Determine if the given transformation is a linear transforma— tion: ' '1"th —9 R2, T(v1,'u2) = (111 +Ug,2v1) wrw = (vi-W. .vuwa) ._ CM =(w‘i. 0%) "-9 (\h'i'wi +W1 ‘i'ui‘i',’ 2Vf+ ZUH') I W. TU) 1TH») : (UH-qu 2V.) +[wt+wzjzw1) _—_ (v(+vz+wmw2,l Z‘vl—e’éwy TLCU) = (.CVl-ECVL 201.) >361“ ETC“) = OCVi-Na'wi) Linear “Ran ﬁmm‘cq ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 7

midterm2_practice - Sowwious W 2 NAME SECTION MATH 21-241...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online