Math119PascalMagic

Math119PascalMagic - THE MAGIC OF PASCAL'S TRIANGLE...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
THE MAGIC OF PASCAL'S TRIANGLE PASCAL'S TRIANGLE This represents a way to write down the "early" binomial coefficients n r Ê Ë Á ˆ ¯ ˜ easily. • Each row begins and ends with "1". (We have a "tent" of "1"s.) • Every other entry equals the sum of the two entries immediately above it. Here it is: 1 Row 0: Contains 0 0 Ê Ë Á ˆ ¯ ˜ 1 1 Row 1: Contains 1 0 1 1 Ê Ë Á ˆ ¯ ˜ Ê Ë Á ˆ ¯ ˜ , 1 2 1 Row 2: Contains 2 0 2 1 2 2 Ê Ë Á ˆ ¯ ˜ Ê Ë Á ˆ ¯ ˜ Ê Ë Á ˆ ¯ ˜ ,, 1 3 3 1 Row 3: Contains 3 0 3 1 3 2 3 3 Ê Ë Á ˆ ¯ ˜ Ê Ë Á ˆ ¯ ˜ Ê Ë Á ˆ ¯ ˜ Ê Ë Á ˆ ¯ ˜ ,,, 1 4 6 4 1 Row 4: Contains 4 0 4 1 4 2 4 3 4 4 Ê Ë Á ˆ ¯ ˜ Ê Ë Á ˆ ¯ ˜ Ê Ë Á ˆ ¯ ˜ Ê Ë Á ˆ ¯ ˜ Ê Ë Á ˆ ¯ ˜ ,,,, etc. - The "histograms" of the rows approach a bell-shaped "normal" distribution! We can observe some basic properties of binomial coefficients: Symmetry about the center: n r n nr Ê Ë Á ˆ ¯ ˜ = - Ê Ë Á ˆ ¯ ˜ (The process of choosing r winners is equivalent to the process of choosing n-r losers.) The "tent" of "1"s: nn n 0 1 Ê Ë Á ˆ ¯ ˜ = Ê Ë Á ˆ ¯ ˜ =
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 4

Math119PascalMagic - THE MAGIC OF PASCAL'S TRIANGLE...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online