math150

# math150 - CALCULUS THE ANSWERS MATH 150 CALCULUS WITH...

This preview shows pages 1–5. Sign up to view the full content.

CALCULUS: THE ANSWERS MATH 150: CALCULUS WITH ANALYTIC GEOMETRY I VERSION 1.3 KEN KUNIYUKI and LALEH HOWARD SAN DIEGO MESA COLLEGE

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
(Answers to Exercises for Chapter 1: Review) A.1.1. CHAPTER 1: REVIEW 1) f ± 4 () = 16 ; fa + h = a + h 2 = a 2 + 2 ah + h 2 2) Polynomial: Yes, Rational: Yes, Algebraic: Yes 3) Polynomial: No, Rational: Yes, Algebraic: Yes 4) Polynomial: No, Rational: No, Algebraic: Yes 5) Polynomial: No, Rational: No, Algebraic: No 6) a) ±² , ² , b) , ² , c) , ± 1 2 ³ ´ µ · ¸ ¹± 1 2 ,2 ³ ´ µ · ¸ ¹ 2, ² , d) ± 2, 5 ² ³ ) ´ 5, µ , e) ± 2, ² , f) ,7 ( ³ ´ , g) , ± 1 ( ³ ´ µ 3, ² · ) 7) ; Domain is 0, ± ² ³ ) ; Range is ± 2, ² ³ ´ ) 8) the y -axis; the function is even 9) the origin; the function is odd 10) the function is even 11) the function is even 12) the function is neither even nor odd 13) gx = x 4 + x , fu = u 8 ; there are other possibilities 14) gt = 1 t , = 4 ; there are other possibilities 15) gr = r 2 , = sin u ; there are other possibilities 16) a) undefined, b) ± 1 , c) 2 , d) ± 3 , e) ± 3 2 , f) ± 3 17) Hint on a): Use a Double-Angle ID; Hint on b): Use a Pythagorean ID 18) a) x ± ± x = ² ³ 6 + 2 n ,o r x = 7 6 + 2 n r x = 3 2 + 2 nn integer ´ µ · ¸ ¹ º · Note: ± ² 6 can be replaced by 11 ± 6 , 3 2 can be replaced by ± 2 , etc. b) x ± ± x 9 + 2 n 3 n integer ³ ´ µ · ¸ ¹ , or, equivalently, x ± ± x = 9 + 2 n 3 r x = 5 9 + 2 n 3 n integer ³ ´ µ · ¸ ¹
(Answers to Exercises for Chapter 2: Limits and Continuity) A.2.1 CHAPTER 2: LIMITS AND CONTINUITY SECTION 2.1: AN INTRODUCTION TO LIMITS 1) 57 2) 11/7 3) 10 4) ± 2 5) a) f 1 () = 0.9999 , f 0.1 = 0.0999 , f 0.01 = 0.0099 ; b) ± 0.0001 , No 6) a) 11/7, b) 11/7; as a consequence, the answer to Exercise 2 is the same. 7) No; a counterexample: lim x ± 0 + x = 0 , while lim x ± 0 x does not exist (DNE). See also Example 8. 8) Yes 9) No; a counterexample: see Example 10 on hx = x + 3, x ± 3 7, x = 3 ² ³ ´ 10) No; a counterexample: see Example 9 on gx = x + x ± 3 . 11) a) b) 1, 0, DNE; c) 3, 3 , DNE, 2 12) a ) b ) ± 1 , 1, DNE 13) a) 0 (liters), which means that, if the gas’s temperature approaches absolute zero (from above), its volume approaches zero (liters). b) DNE, because temperatures cannot go below absolute zero. The domain of V does not include values of T below absolute zero.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
(Answers to Exercises for Chapter 2: Limits and Continuity) A.2.2 SECTION 2.2: PROPERTIES OF LIMITS and ALGEBRAIC FUNCTIONS 1) 39 + 18 3 16 , or 3 16 13 + () 2) a) DNE, b) 0, c) DNE 3) a) 0, b) 0, c) 0 4) a) 0, b) DNE, c) DNE, d) 0, e) , f) DNE, g) 0 5) a) DNE, b) 0, c) DNE, d) 0, e) DNE, f) DNE, g) 6 6) Yes, by linearity of the limit operator. 7) No; a counterexample: lim x ± 0 x 2 = 0 . See also Example 5 on lim x ±² 7 x + 7 2 . SECTION 2.3: LIMITS AND INFINITY I 1) a) b) 2, c) y = 2 2) a) 0; b) 0 or 1; c) 0, 1, or 2 3) a) 0 + , b) 0 ± , c) 0 + , d) , e) ± , f) ± , g) ± , h) 0 + , i) 0 4) Yes 5) No; some counterexamples: Example 5 on fx = sin x x ; also, = sin x + 2 sin x + 2 . 6) a) DNE, b) 0 or 0 + , c) 0 or 0 ± , d) 0 or 0 + , e) DNE, f) ± 7) a) ± b) i. lim x x 5 + 3 x 4 ³ 2 = lim x x 5 = ² ; ii. lim x x 5 + 3 x 4 ³ 2 = lim x x 5 ± 1 + 3 x ³ 2 x 5 ´ µ · ¸ ¹ ± 1 ²³ ´ ´µ ´´ = ² c) i. lim x ±²³ 2 x 3 ² 6 x 2 + x = lim x 2 x 3 = ; ii. lim x 2 x 3 ² 6 x 2 + x = lim x 2 x 3 ± 1 ² 3 x + 1 2 x 2 ´ µ · ¸ ¹ ± 1 ´ ´´ = d) lim w 5 w ³ 4 w 4 = lim w ³ 4 w 4 = ³²
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 09/08/2011 for the course MATH 150 taught by Professor Bart during the Spring '06 term at Mesa CC.

### Page1 / 15

math150 - CALCULUS THE ANSWERS MATH 150 CALCULUS WITH...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online