{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# lesson_02 - P939'2 Lag-3w 3 Read 36¢th 1.4 and L5...

This preview shows pages 1–7. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: P939. '2; Lag-3w: 3- Read 36¢th 1.4 and L5 Hu‘memrk 3-99 LE’Sﬂun 2:. SEE-itf'nn i194“; add-ﬁumﬁemi it'hfnugh 3-3; 3?,5339 \$5933? 5999599 1.6, :5, I117, 1'?er 39. (93.39). Pm a? ? 1.3? EEuan‘c-ﬂs and Quarks An Egunﬂnn Staff‘s thaf {No mathenmfrmi .emPyegm-m are 'Egﬂwﬁlmt An eﬁunfl‘ﬁn f5 Called MW ['3‘ it 1's {We f“ alluaiuw- {1+ the variable fur whrch the azimuth“ 1‘s dejfned FM emmfhﬂ ““3 E. tan-TIME _ _ I 2mm -.53:} W—slxi, and ﬂ ,_ m} we Edatftre; The Fiﬁ: two hairs! for ail real numbers gj— ﬁt The third hat-{95\$ nnbj when UH: ill Since ﬂit“ dEnumI'naan Must be nonzero 1"?“ the amfrgjggw {:5 be. deﬁned. Mme often an e-Suun'un is Gandl'ffunai , which means that if is tru'e'j'w Semi-.3.- "uqhes ej— Eh yaw-am, but nm‘: a“ [ﬁght Makes #19 EﬁcPfESIEﬂM. deﬁned).- Eguﬂmha Such as 1 irxﬁt—J’ XI+3W+1=DI and 96 ="2 Me ﬁnﬁdiﬂnnaL TAM firsf has ﬁhesﬁnﬂfx gﬁmrton “x: -2_ ﬁP-secund 1': ﬁshed by fﬁcwinj [TKH)(fx+;}-:0 ﬁojiw 6419 mm W" m “lb-2. The third eguaﬁah "xi: *2 hi3 11:1wa number SbLurfﬁh5_I 3mm; The ﬁguwe ej- a Teal. number is always handﬂejutﬁ? {30). Thus bhe third {53 mammal EX . Soﬁe M'Eg.-tmﬁun,[fhu{ is; determmé nit ﬂames ej— "X Hun‘ saw” ﬁt? egunﬁbn.) 46-1: —JI~1< =-'5 Sgbﬂiw‘l We man’t 3,3qu bﬂth aides difet‘ftj‘ Iﬁﬁfﬂdl Seramtz big-fa'a‘ifais ‘l 6.3; :_- FIE -5" The-"Ii \$814M? bﬂ’ﬂ! Sic-{E51 6.4% = Id-‘X -1'JT3;§;45 +5.; Hen: We. H51 the .grecfgi lgr’u‘ducf #VMHIQ = H: ~1°W +25 fuﬂbf=a2-1o+b+bl :- 26 +31 arc-m Ignim the Incline-1., E-X—£16~'x)=—-IUJ]"”..x-_ E-e- ﬂow-IMP: Thrs Sim-Fluffes. m 2: l 1.9:: Pﬁﬁe “3 SBULMQ buthﬁidesr 4 : |—)<' . 3;; \$72.}; Enlimtanf 1, Fkﬁjtimﬁ‘ gnu EEHHE bath ENE 43:!" Gﬁ'E-Eﬂﬁtﬁﬂn ) \jbu 3:115“ [Cf #:1191317 WAQT Hm; GHQ“ #18 truly a. S-oLuI‘iah 5? hat, I“ H‘ES Eta-”Fm , Substitut; W1“?! In“ the ml‘jfnal EﬁH-ﬂﬂﬁh J 6—9:: _W :‘5. «meagre RI: -J:r.?) =-5 BM? ‘QJ‘W‘W=WW=1 45—5 Sc: X=-3 (".5 net" 0. S-‘oiuﬁnn :31 the ahaﬂe Qﬁhnhﬁn _____.-_ The rgﬁwed Efghqﬁun has 710 Soluﬁ‘un- (or; the SoWEﬁn Ea empty 5.21: I?) @Tulﬁ‘iﬁ of EB unionﬁ' The. 315:ch of an eguqficm in the Iraniahﬁra 9E and} \$51315 Oj- the SET of PM”: (mg) in the x‘ljaplane whose wdiﬁﬂe's Satisfy ﬁhe eguatinn _E_J_(_ S-ketch 6’16 graph 'ej‘ the. Eﬁuqffan 2%4—35: é EEuqtiahs all Hie Term Away—:31 mkae A , B) c are. mﬁﬁfﬂﬂf‘ﬁjqndn'f {9qu one [)1 Hand 3 1'3 hui 6*ng tn ZEN}! are, Cniieti {Mew Eganﬁons. The” graphs are ﬁne;- {n HIE 11in“? 'SgLutian To ﬁrth theme} [1 suﬁims ta fem! two Points an the line, His have Ehmiem‘en'f ts: find 11ka {HEVQEE'R Tu jcnd wintermlﬁr 33+; 32¢ gw-F3.o_:6’ Sc: “#:55 \$4; the: x—ENerCE'IJT Ew [wn'ﬁt‘ﬁ Ch madmafe Em) Tu Til-1d HﬂihﬁTCQPt J E'Et 1:1}. ltﬂill~31~j=6 30 3:2 _\9 3b tl‘ﬁ? H-inb'rtipi (5 [all] The graph is as shun an 9151 Tfjh‘t. Canal-ate? the are?“ ej- the Talieminj Gammon egueﬁnhs Ch, 85%; b. ﬁll-:32. E IKE—1'31: {e}- The athh ej- Eguu‘tl‘uh Lot) is 0- Ferebeha Drenfnj upward and the ﬁfﬁ‘Ph C5 ngmeﬂm “Emit \j-ﬂxis _ The are?“ Dj- EE-uaﬁbn Eb) {'5 a Panama aliena'nfj ta the right and this graph is symmetric about ”ice-ems The graph gj II_-_-_-_-_-_._..-———"'——'_'—-—— . qumuh (c) is the unuteire-In (ﬁgnﬁfeﬁf «a’f “£ij with Nadine 11 The unfi- eﬂde E5 Sljmn‘IeiTI‘E «313.9141 ‘j—exis’ symmetric eheui ’x-r-Mcfe lead is ﬂag 3 name-ink: mbeu‘f the m In. 21—.” "“5““ ‘ The“ W" ”1L ““ €3qu has 3W3 Shemeey :1 mg) is __________________. on the .cjmllh whenever {W3} :3 W the amt)”. , 1115-chth (ET am egu'thh hes "Lexis. symmeej {T [oer-g} 1'5. 0]"! the graph WhEHeuer {9L3} :‘e an the TQPH _ The graph of an eguati‘un hag wrﬂin symmetry if (-74:33 4:5 en the armpit wheheeei (\$6,113) is on thﬁ‘jmflh. I I em“ a.“ 93“,“;qu wing“ drawinj {ts cjmlah ,we can determine whether the in?” [JUSRSRS' any ‘31. the Symmﬂtﬁﬂ darned 13.3 aboVe- usinj thﬁ j‘bHD-wthj method, . [I] In the art‘jihai egueﬁmf TIE-Wen! {1648.} b}; {44,5}, If the new-exlﬂ’eﬂrw is eEuEmlent ﬁx: the en‘jinet eguett’um theﬁmfh is s. mmefff-é ebeuf gram __ Otherwise! H Riﬂes nut ha‘hlre {hi—gaff; 331119161131 __..__.— [1). Replace UM} by wry); if the new QKFWSEI‘M Es eguc'vafenf Lume- nrfjimi ME F the "ijh his M Oth?*w‘3€, (“f times- not. B} Belgium m5) 53 (4:351), if the “ﬁw exlﬂésmn is eguiuniem‘ m the magma! ﬁne! the ath has MT” symmetry Oﬁﬁerwr‘ﬁﬁ, ft dues hat _E_x_ DETEIMIHE any a'gmmetrj Prerem‘m: 53‘ He egual‘fm y: 3&5“? Sotuﬁww: lawn-m {M} by Hm), 3=3~3Hcf= 3421‘“. Thrsnnsr is the Same as the errjin quatmn, 5013111331:th r3 Sjmmeth‘c about 54m}; mam (m) by {vs-H), “*3 93“?“ mm“ "WHY? ““3 5=+~3+3f mhmh is. mat the Same mg the wrjinui; 5n the ﬁre-[1h dew nut have 7mm Symmetry- Uﬁl Rerlw W]; by Leg-H)! -‘_-j=5—3[-XJ1=3~.53X'JJ so j=.ﬂ3+3xi ﬁg‘f‘fn‘lﬁ“ same as f’aemjinah 3.0 the graph daresnot have @3111 gimme-ﬁg, E31 Use symmeﬁ'j tu ske’rﬁh £41? j‘fﬂfﬁ 0T 3:]xt. . SoLutI'an germ“! (PRU) 133 L493)! we have 3:: I‘M: [XL Sci-1‘3 amp}: Es Symmet'tric quﬁ 341%: _ Nate‘whgn ”‘3’“: {1:11;}:94 Fab»: .r——-'—'_"'-——-_—____-—-'—-_'_—_- PM? the gmlnh [mks ilk? WEI“) The“ bﬁmm ﬂf the gimme-”j PEPE)? 31 we 'abfﬂfh f‘fe 31713 D‘f 5': m1 ygx Wham Karo 3=iﬂrl “X \ SimilarLjJW-‘ejind time graph of y=x3 f5 5 mmetnc abuu’r Eire: Wain} mashmh beimﬂ, S‘Ectl'nn L6 Functiuns [Part I} BEL A M frnm a Set E {MD a 3.915 Y is ﬁrm? Hmf 1535i?“ Each .eEE-menf in "X. to Precisely one «element. in ‘f: If f Is usgd tie dﬂnoté a: fanciful jrom ”a 5815K Erma a: set Y, wriﬁen Jt: x9957: Hen the m of 'J-c undar f“, denoted fun}. fa the unfgue-uqiae in Yamcr‘afea‘ W'th ‘1’:- 71“? Wt X f3 (awed HE thaiﬁ ej- 3E! anti comm 'oj—oil'f Humbm that can be Eant tn the fuﬁdfnn The range of f is {he set of eIEMen’rs in ‘1’ that are agaccmfed wii'ﬁ stame- efement in X Tﬁen Mje need Uni: be 0“ ﬁf X. Nth“? {ha-“h Herman? in the domain nf m Tuncﬁan‘ Cormgfmnd's ti: o. unrgweelemenr En “*9 ran-39, mane than we eiemem in the-dawn can be ﬁEJo‘CI'qfeo' with the Same Elé’men’t in the range; a; shmh befum. Na“! {.1 Funeﬁnn [two e-lémfﬂfﬁ I“ T “W “FREE "rﬁ‘d Eu 5&3) This mum is Ccnm‘rnﬁ JJ‘n‘mqrig Lm'ih funm‘fm whose dummy; and 1'9;th bn'ﬂ | CunEEs'f GT rEatnumbers. Functions cf Hug tape unusually (3;an by same Wm“ {aka fwd: 396%; ' Unusa otherwise Ere-:ijied , the. ﬁumﬁf" f3 assumed bu be {ﬁeMﬁ 'Ii"»Eh::~.{_‘.t"l1.urnb+;-3rsr when Put info the #2?!“th the E’E'EuH (unified) [3 a. rmf'numhﬂ Herefme , the dumaih a-f jive-J‘JMJH is a“ Tani humble-r3; win-ch we write as R, w ("ME-n) HE}: Fin-d the tit-mm ai— the junttiun 3m) :5?! Sketch {+3 ﬁrm-Pb Mel indimtﬁ H5 Whig. Sabﬂfﬁh_ The [ma-est :14me of reatnumbers jw J? t: Pmdum a rat number :1»,- T9. sketch ghe'ﬁwaph. Make :2 chmf _ [llaf'fhe Paint; {0,0}! {L I)! {41-31.}! '3: E] I 4. I? Grid jﬂih taLIE'm SMﬁ'ﬂth‘vj by n Chi-NH? \$11; 0 l 2 3 13 The mﬁge {.5 [mt-a) (Just ink-era look what \jaualME's are. used :3 j‘uﬁcfl'gn \JQMQS based on the graph) EX Find thedomain 01- Qach funcffm (a). fuck-{Hag 12b.) SW: 1. ' I (d) kw=——-‘“’ Solidﬁbh: {a} T) 5—; umaih f3" {-m’m) [H “Rd to ‘rule ran-T £11m numbers whrch make the dEnummqmv ZEN}. 39W? fax-3:0. By famrm‘} mum—31:0 5:: Film H3. 30 the awain Es fw‘ Grab-I Ghd mﬁﬁ (_= (~-t>e,—I).u(—ri,3)u(s,m}) Ln intmnt h'otnfiun Cc) Sinﬂz Kim-3' arms in [33mm wot) radrﬂ ; need ta. ream? (Kim-53.0. To some Hus, Salve mink—5:0 just Weaef'x-J-IW 1:3 _ Mali-IF {A SIT“! than‘ as Ijr.f-‘[r;..:.ac,1I Thug-2.1351? dumain {.3 (mg-I] Ufa-W +u-uﬁ __—-——-—_—.—_———-r———-5‘jx + 1. *r T 3 1‘ ‘1. GD E?) Cd.) 3mm. the denammaﬁﬁ’ f5 17(11X-3 _ We shwld my”? 3% 'f—H-Bbﬂ 3::- HM the md't‘mi is dejined and the cienomfnamzisq Usinj the Sign chart jaunt: qbwe [and 1mm uu'f the 3mm.“ thQ-denpmmnm :32 we him the domain of km) {3: (+Wr0 Ufa?) M; Thin}: ﬁbuu‘f the dn‘ﬁ-erenﬂz bBIWEE?‘ (C) and [EU ...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern