# hw2(4) - • If there are solutions determine them 4 Is e...

This preview shows page 1. Sign up to view the full content.

Homework assignment 2 * Due date: October 30. 2006. 1. Determine all real eigenvalues and corresponding eigenfunctions of y ′′ + λy = 0 , y (0) = 0 , y ( π ) + y ( π ) = 0 . 2. Determine the adjoint problem of y ′′ + y - 2 y = 0 , y (0) + y (0) = 0 , y (1) + y (1) = 0 . Is the given problem self-adjoint? 3. Consider the following boundary value problem: y ′′ + y = sin 2 x, y (0) = y (2 π ) , y (0) = y (2 π ) . Using the Fredholm alternative, determine whether or not this problem has solutions.
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: • If there are solutions, determine them. 4. Is e − 3 t e − 3 t +3 e 3 t e 3 t e − 3 t e − 3 t-3 e 3 t-e 3 t-e − 3 t-e − 3 t a fundamental matrix solution of ˙ x = 1-2 2-2 1 2 2 2 1 x ? 5. Find a fundamental matrix solution of ˙ x = 1 1 3 1 1 3 1 x * MAP 4305; Instructor: Patrick De Leenheer. 1...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online