This preview shows page 1. Sign up to view the full content.
Unformatted text preview: H ( x ) is not dierentiable) Show that the distributional integral i x g ( y ) ( yx ) dy is given by g ( x ) H ( xx ). 5. (parts of of # 9.3.6) Solve for the Greens function directly: d 2 G dx 2 = ( xx ) , x (0 ,L ) , G (0 ,x ) = dG dx ( L,x ) = 0 , and compare your result to that of problem 2 above. 6. (parts of # 9.3.11) Considering the Helmholtz equation and assuming that L is no multiple of , solve for the Greens function directly: d 2 G dx 2 + G = ( xx ) , x (0 ,L ) , G (0 ,x ) = G ( L,x ) = 0 . Show that G is symmetric: G ( x,x ) = G ( x ,x ). (Note: use the variation of parameters method to solve for G directly, and use the rules of distributional integration; for instance, you might nd that the results of problem 4 come in handy.) * MAP 4341; Instructor: Patrick De Leenheer. 1...
View
Full
Document
 Summer '06
 DeLeenheer

Click to edit the document details