Sol-162E2-S2008

# Sol-162E2-S2008 - MA 162 Exam 2 Spring 2008 Name Set/w” 0...

This preview shows pages 1–7. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MA 162 Exam 2 Spring 2008 Name Set/w”: 0 M Key 10—digit PUID RECITATION Division and Section Numbers—w—m— Recitation Instructor Instructions: 1. Fill in all the information requested above and on the scantron sheet. 2. This booklet contains 17 problems. Problems 11 and 13 are worth 5 points each. The rest of the Problems are worth 6 points each. The maximum score is 100 points. 3. For each problem mark your answer on the scantron sheet and also circle it in this booklet. Work only on the pages of this booklet. Books, notes, calculators or any electronic devices are not to be used on this test. WP MA 162 Exam 2 Spring 2008 1. What’s an appropriate trig substitution for the integral / m3 V 4 ~ 9302 dry? Jafwéﬁlxj) i“ wax) Lef (MK) :3: 6C 90v» @r .358 : 23in(0) B. 351: = 2tan(0) 1:; 3X :3: Z gi“ (:9 C. 3% =2sec(0) D. 2:1: : 3 sin(0) E. 258 = 3 tan(0) 2. Using an appropriate trig substitution, the corresponding 0 limits of integration of the . 3 x3 Integral \/§ m d3; are .91 . W , >1; 7r/6 W We x: 2mg ﬂew gar/m a. 7r/4 .4 F; M “i ”I! W “I? B. MEWW {/5}qu (€>“’ é? QM 7r/4 A. 2 w ‘K w CIT“ 0' 7r 9<?\:m(3)“tm(l)”:}“ :3 D. 7r/6 E @ "2* L .ﬁ {3" E ”/2 E I , '1 ' - 7r/3 J \ 5 3. Using an appropriate trig substitution, / \$:_ 1 dzc = \$2¥Wi “:33 X: geﬁ/G' A. /tan(0) sec(0) d0 WW szwﬁ'i f; ge,c,&."mi 12 W27} :: ﬁrm-g B. / sin(0) cos(0) d9 WA (AX :: £63“ (9' ”(Lﬂjﬂélﬁcéﬁw .. C. / sin2(0) d0 YNZW“ W k w \$609 ‘JfT/"W9¢8 D. [sec2(0) d0 wwww )4. W p K ‘19 we @/ tan2(0) d6 : j “(ﬂ/AM, '“ 6} .La» MA 162 Exam 2 Spring 2008 1 / 2 4. What’s an appropriate trig substitution for the integral /-—3—— 4:1: 90 Z Z _ = ' W” X :3 ’(74 wﬂg‘zﬁ 4,ng +LF A. ac 2 m3s1n(0) W "L B. m—4:28i11(0) W Li ”(3472) C. w—2=3tan(0) 900. mi, X—IL 3: 1 Sim S, :1; ~ 2 = 2sm(0) E. :1: —— 4 = 2tan(0) 5. The form of the partial fraction decomposition of \$16326 is ‘ Nab/x. Aac+B Ca3+D [(0 2?: pm W A. m2 _4 + (\$2 ~ 4)2 whit (>4 - L68 (\A 41+} B A + B J Hz) LX, in ~ 4 a: + 4 1 C. A + B + 0“” + D (X'L\(%~+QC\A Jr?) a: 5 2 a; + 2 9:2 + 4 ' —- 2 5 A E CHE 5” 2 w + 2 a: + 4 /1‘JM err W A B X”; X42? nytii’ E' x2 — 4 + m2 + 4 3m 6 (:13—1)(:v+2)dm_ 3x A? i £61n|w11+21n|m+2|+0 MM” 1:: W ,3 B. ln|m~1|~2ln|m+2l+0 (xAﬂ\)L\[g‘%‘2«\i X’Wi ﬁ#:/N’m 5 C. lnlm—1I+IIIIIB+2|+C W”)? 2 7“ iﬁviwiﬁ£ffia#EEL:->Wd””W”’ D. 21nlzc —— 1| +1n]a:+2| +0 “a; L we) 2 3 %I&\ kO’E EMA? A, 2' E. 21nlm—1|—21n|ac+2|+0 MA 162 Exam 2 Spring 2008 1/ 2 _ 7. From a table of integrals, it appears the integral / 9:321: 4 dzv is closest in form to 1/ 2““: 2 2— / u u ___a du. With an appropriate substitution, / 1? dm : ~ l 1 m ’ ﬂ \ :1; h—v LL . '- M”VLf2xWa-Z.m .3 A4/T d“ , .L m6“ DE”: 3 “b“ ; 5” CL" 7% CL“ B. 3% Ed” W‘Mwm‘ M“, J v ”ﬂmuV - " ’ Mﬁ V:— ~ L 1 “2 __ 22 L Way L __ (MAL i i U ’ "Nut @12/ u d“ MM x L , {bk \2( g ”l W D 12 / du u MT: 2 2__ 2 ’ \1 MW‘””“*”‘ 3 u, , UL 8. A pool, 12 yards long, is shaped like an oval. The distance, in yards, across the pool, at 2 yard intervals, is shown below. Find the DIFFERENCE between T6, the trapezoidal approximation of the area of the pool and M 3, the midpoint approximation of the area of the pool. MgstﬁEr’lrSl 1&8 A. 12 ‘10 0.8 D.5 l l | | 4 I I 024681012 E-2-5 MA 162 Exam 2 Spring 2008 Z 9 [15% gm :7; “AZWK‘ AW? B ln(2) .2 M1. E ' 4 5 D. E E. Diverges oo 1 _ x t“ l , ’ A. — W“ [1 " it" 16 w my M? I B. ~1— fiW? Mwﬁl) { 128 1 w :Lw ,i-L»\:o+ri— 0'35 ;.b—=>>00 LILQﬁ/AZ 6%- Co%’ 3611 11 Find the length of the curve y: 3 + 2333/2, 1 < a: g 2. W ngik W i bmgﬂzg} 2m i&.22—7(193/2—103/2) l/ ‘27 \W\W éﬁ: W [+(gX2’YW: Lqux 1 3/2 3/2 Qgg 7 , 3/ r , C.§<21 —13 ) WWW kaﬁﬂMwl\p BM” & l/Vvﬂxgﬁ 0] ,1 E 4¢§+1 3/2, 3/3,) ; 2,7 ( Vi WW MA 162 Exam 2 Spring 2008 12. The curve 3/ = 3:5, 0 S a: g l is rotated about the y—axis. The surface area of the resulting surface of revolution is 1 1 dS :\/{ + “/2479 CM A. / 27rccx/1+x10 dm 0 / Ll, 7... 1 _. Li’ 534 > AK“ B. / 27r\$5V1+\$10 drr I WM g wwwww Dix @fo: 27rmx/1 + 253:8 da: 0 D. 27m: 5\/1+25m8 d3: { 0 1 E. / 27rrm/1+5a:4 dx 0 13. A plane region is bounded by y = 932,31 2 0 and :1: = 2. Find the yﬁzoordinate, ‘3], of its centroid. g L 4 {2' .2 M __ 4 3% K Kg @ Ay:g E _ 2 “33”,? 9 , B F5 ‘ L q_7 fag :X Swill/K (”—3 6 3 l {Mi ’6\ jrwwzéfrw am® ‘QI H 2 w tog} /<> // “l 14. A plane region in the ﬁrst quadrant has Lentroid (3, 4) and area 7 square units. The volume of the solid generated by revolving the region about the line :1: = —2 is m&i\V‘-5 5: 3 ”(”39 :3; S” A. 8474' cubicunits \ l /\ 670% cubic units 2W2; Vugmm 0’ g DOA 4, [Fa/b (”(le C. 567r cubic units _, D. 4271' cubic units '7 21F (g >67) :5" 7071’ E. 3571' cubicunits MA 162 Exam 2 Spring 2008 n2+1 71? 15. Determine Whether the sequence an 2 converges or diverges. If it converges, ﬁnd the limit. 2 9:»; l A. Converges to 2 \ .7 , \ VV\ 1“"?in :: IL Converges to 1 WV‘ 00 V\ C. Converges to 0 D. Converges to 1/2 E. Diverges 16. Determine Whether the sequence an 2 sin(n/ 3) converges or diverges. If it converges, ﬁnd the limit. \ A. Converges to 0 \ M00 QM (jg—LB dgg}; Wj‘ Q/fd Sf“. B. Converges to 1 \(\ -=¥> C. Converges to 7r/ 3 \/§ ”a" i 3in [/%)E A? Vﬂj‘a; D. Converges to 7 @Diverges. 2n—1 . converges or diverges. If 1t converges, 3n+2 17. Determine Whether the sequence an 2 ﬁnd the limit. 2 ”i A. Converges to — x V\ v jﬂm Zia—«~— 3’ ﬁ‘m (2) (\$3 ‘ B. Converges to: VV’5 00 3M+L “”370 Mfg; 1 Vi @S L 3 3 C. Converges to 374— V\ Converges to 0 MA r VLW i) :_ O E. Diverges. ...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern