Sol-165E3-F2001

Sol-165E3-F2001 - MA 165 EXAM 3 Fall 2001 Page 1/4 NAME...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MA 165 EXAM 3 Fall 2001 Page 1/4 NAME erlaclzn} k8 STUDENT ID RECITATION INSTRUCTOR RECITATION TIME DIRECTIONS 1. Write your name, student ID number, recitation instructor" I ' in the space provided above. Also write your name at the top of pages 2, 3 and 4. 2. The test has four (4) pages, including this one. . Write your answers in the boxes provided. . You must show sufficient-work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit. 5. Credit for each problem is given in parentheses in the left hand margin. 6. No books, notes or calculators may be used on this exam. nub-C»: (10) 1. Find the absolute maximum and absolute minimum values of _f(:c) : 3:3 — 3.1:2 + 3.1: on the interval [—1, 2]. J; (—4) = —- 7 ' :axi—ex + 3 o : 3(x‘—-:Lx+t) 3L'x—IJQ’ H3): 9— 9 CD abs. max. Ll'EI-S x1! LCYI+LCmQ Value) abs. min. t . C9 (8) 2. Suppose f is continuous on [2,5], f is differentiable on (2, 5) and 1 S f'(:c) S 4 for all z in (2,5). Show that 3 S f(5) — f (2) S 12. (Hint: Use the Mean Value Theorem.) 3 his : £C5)"Ra’) {:ov SW C I" (1:5)_. 6’— 9» t I f 'CLSI)_"R2‘) i H. Because. 1‘5. F0054 5‘—-9- ' am. ’XIACQJS'J- 135 . .1 3 f. RSV-Huge. 1a. MA 165 EXAM 3 Fall 2001 Page 2/4 Name: Fw #34; :1 TE ans. Is WOWETS fiv m 5°;*T‘3_ji__ (20) 3. Find each of the foilfiwing limits as a real number, +00, —-00 or DNE (does not. exist). , Sims—2: gym QOS’x——f H [gym -—Smx a 11m : 2 ()”‘*D 333 x—ao 3x1 an 6X ' (b) lim mn—l“: \ _z—}l+ 1 (C) lim xtan — Iii-'91:!) I Fox): xex+ ex 21.” {30;} = 'L”‘+')€’K fl , 2c X I Igvvxé—I “rs :xe+1€ Nd“) E413 i am "4. *' JP'CXIVO W" 7" L ,{3‘ (-I) =-C 3.6, ' ._ 31E} 2 e“ = “i” LQCaQ Minimum - MA 165 EXAM 3 Fall 2001 Page 3/4 Name: 2 20 5. Let f 2: = . Give all the requested information and sketch the graph of the 1:2 -— 4 function on the axes below. Give both coordinates of the intercepts, local extrema and points of inflection, and give an equation 01' each asymptote. Write NONE where appropriate. ' ' - - Symme‘lv7 {:(“xl : {:0} x—9‘3mx1vq ‘ x—Mo I—q/xa. '1 x at; =LX~1)(X+L)=O X a 6L 357mlolales- - _. 1. —3x £mrkx Hllx Xlx_ 1 ‘ CVITlc-‘Q FT X=O}y’:o. -W“”ll"9 *- SKA-(Wais- ' ?(3XZ+LU _ 1 Ln 3 ¢ 0 horizontal asymptotes -— _ - I] X “' ' ' o _ - O .52 - - - F l < (0,0) Lt: vertical mymptotes x ._ Q. o (I x =I,___I a. . \ ‘$ (X) 0 “E X40 Lino”. intervals of increase _ FIG“ O H, (632$) Pinko fl X z ‘9" av X 7 a . . . ' I ._ C Can-Cu we ml”)— local. “mum t 'l :11th O h? _1< X4- 1 intervals of concave dom1| C‘, Q.) J _ l CCU“ Ca. we add intervals of concave up (_ 0'0 L1) 00) ® {. I points of inflection N o M _§ CD MA 155 EXAM 3 Fall 2001 Page 4/4 (12) 6. Find the dimensionspf the rectangle of largest area that has its base on the :c-axis . and its other two vertices on the parabola y z 8 — 3:2. A: 31ng a; :‘E'HX A=3x( e—Xl) -_— lexuaxi wm- 05x5 I? dA _ _ ’— 23; y ’6’ w: (Take; ofim H? O I: "9ng _ M We 3615 MISSM . (5) 7. Find the most general antiderivative of f (I) z 4seca: tans: — EB I! i! _. Take 0*; LE I? C 15 104551ng H‘Secx—aflnlxl + cj SETS (5) 8. If 8 fizz-M2: = 1.7 and 8 f(:c)d:c : 2.5, find 5 f(x)dz. I 8, f2 5- f5 L M ,‘é_q-ngw is Wmh¢3.tb‘:-|t gram-:lemébx 4810:1424 “W ' ‘9 :L 1 .5“ 0. sub: (getl'afin 4W a # (10) 9. Find f if f”(z) 2 J5, f(1)= 1, and f’(1) = 2. ...
View Full Document

Page1 / 4

Sol-165E3-F2001 - MA 165 EXAM 3 Fall 2001 Page 1/4 NAME...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online