23.1 Physics 6C EM Waves

23.1 Physics 6C EM Waves - ElectromagneticWaves Physics6C

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
Electromagnetic Waves Physics 6C Prepared by Vince Zaccone For Campus Learning Assistance  Services at UCSB
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Electromagnetic (EM) waves are produced by an alternating current in a wire.  As  the charges in the wire oscillate back and forth, the electric field around them  oscillates as well, in turn producing an oscillating magnetic field.  This magnetic  field is always perpendicular to the electric field, and the EM wave propagates  perpendicular to both the E- and B-fields.  This gives us a right-hand-rule relating  the directions of these 3 vectors: 1)  Point the fingers of your right hand in the direction of the E-field 2)  Curl them toward the B-field. 3)  Stick out your thumb - it points in the direction of propagation. Electromagnetic Waves Prepared by Vince Zaccone For Campus Learning Assistance  Services at UCSB Click here for an EM wave animation
Background image of page 2
Like any other wave, we know the relationship  between the wavelength and frequency, and the  speed of propagation of the wave: λ = f v wave Prepared by Vince Zaccone For Campus Learning Assistance  Services at UCSB
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Like any other wave, we know the relationship  between the wavelength and frequency, and the  speed of propagation of the wave: λ = f v wave In the case of EM waves, it turns out that the wave  speed is the speed of light. So our formula for EM waves (in vacuum) is: s m 8 10 3 c ; f c = λ = Prepared by Vince Zaccone For Campus Learning Assistance  Services at UCSB
Background image of page 4
Like any other wave, we know the relationship  between the wavelength and frequency, and the  speed of propagation of the wave: λ = f v wave In the case of EM waves, it turns out that the wave  speed is the speed of light. So our formula for EM waves (in vacuum) is: s m 8 10 3 c ; f c = λ = It turns out that the speed of light is also the  ratio of the strengths of the Electric and  Magnetic fields in an EM wave.  So we know  that  E=cB  (in standard metric units) Prepared by Vince Zaccone For Campus Learning Assistance  Services at UCSB
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Like any other wave, we know the relationship  between the wavelength and frequency, and the  speed of propagation of the wave: λ = f v wave In the case of EM waves, it turns out that the wave  speed is the speed of light. So our formula for EM waves (in vacuum) is: s m 8 10 3 c ; f c = λ = The continuum of various wavelengths  the  Electromagnetic Spectrum It turns out that the speed of light is also the  ratio of the strengths of the Electric and  Magnetic fields in an EM wave.  So we know  that  E=cB  (in standard metric units) Prepared by Vince Zaccone For Campus Learning Assistance  Services at UCSB
Background image of page 6
Image of page 7
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 09/09/2011 for the course PHYSICS 6c taught by Professor Staff during the Spring '11 term at UCSB.

Page1 / 24

23.1 Physics 6C EM Waves - ElectromagneticWaves Physics6C

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online