{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Sol-161E1-F2010 - MA 161 EXAM 1 Fall 2010 Page 1/9 Name g...

Info iconThis preview shows pages 1–9. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 8
Background image of page 9
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MA 161 EXAM 1 Fall 2010 Page 1/9 Name g RAD l Al 67‘” MEN/I 10-digit PUID RECITATION SectiOn Number and time Recitation Instructor Lecturer Instructions: 1. Fill in all the information requested above and on the scantron sheet. On the scantron sheet also fill in the little circles for your name, section number and PUID. 2. This booklet contains 16 problems, each worth 6 points (except problems 1, 5, 13 and 15 are worth 7 points each). The maximum score is 100 points. The test booklet has 9 pages, including this one. 3. For each problem mark your answer on the scantron sheet and also circle it in this booklet. 4. Work only on the pages of this booklet. 5. Books, notes, calculators or any electronic devices are not to be used on this test. 6. At the end turn in your exam and scantron sheet to your recitation instructor. MA 161 EXAM 1 Fall 2010 Name m Page 2/9 1. The graph of f (as) = tana: is shrunk horizontally by a factor of 3, then translated to the left by 2 units and finally translated down 4 units to obtain the graph of h(:1:) Then h(a:) = A. tan(393+2) —4 . '_ “(fa/“>5 W) tau (3%) B. tan(-;-IB+2) +4 we «5% {2‘ [X +23) C,tan <§w+4> —2 M» f?“ (/ g [>4 +2)» w L} D tan(3a: — 2) @tanwa: + 6) :1: :1” {:m (MW) «42 2. The center and radius of the circle given by 251:2 —[—2y2 —4':v+8y+ 1 = 0 are respectively , A. (2,4), 3 Z(XZW2>< +1 > Jr R/tjziLfg/ni) , ;. B. (2,—4), f I v f ' O.(—1,2), W :1 Ml +73“: leg D. (1,—2), 3 mac—r2 2/ Km!) L “t 2/? «(Lg/)2 : a? @(1,—2), % MA 161 EXAM 1 Fall 2010 Name _____H._______._. Page 3/9 3. An equation of the line perpendicular to 2m + 6y = 2 and containing the point (1,2) is A. 3$+y=1 fiwrétj:1 77> $71: ”Wx +77; @333, 77-1 1 7 1 7} lx+2y=~£ gtDPC/l :4 —— E my) Far16MM C(MCIA, 3x 3 <4th :1 3 _ D. ~§w+2y=1§ E. gar-31:"? LififlW/‘xéfiw Q/flWJLlflx u g” ”’21. :2 (X! i) WMSILIQEWJ Balm” =73 05747va 9/ § (’1 / w 3 x716“, 4 Let f( ) art—2 and 51(55):]; What is the domain offog? I 7 -_ I A.:v7é—2 id (":13 7 :77 W5 >< % O B. a; se 0 ‘ OxyéOandmaé—Z f" 1 ,r ,. D.a;;£0anda:3é—- (7%? 0am Ham 0 1 2 - .1, EL E.:v7é—§anda:#—2 H 7) 11% \m ”a :1 “”7 177? :m MA 161 EXAM 1 Fall 2010 N ame ____._________ Page 4/ 9 5. If??- <9 < 27r and tame: ~g, then 0059: 1 A.— J5 Z 2 2:: if ~65; B.———— ) WEI (an «5 x.) o -1 ‘ M5 1 D. __ x/E E E I 2 I 6. Which of the following statements are true for all values of ac and 3/? film I. 23-21! = 2% FJAQ II. g:— = 2y-‘w git/QM III. 2m + 29 = 233+?! @one are true‘ B. Only I. T V :71 Z. I? :; 3 C. Only I and III. M Z (3 1 LI” 3: 3); D. OnlyII. Z z ’32” I; 4 B. All are true. 2 < 2 (a TI 2f, 1 v) “If? 2?? I” E Xi!” ) (j ::. I l . '3 13:" I I I _ w 267th 1,1le :g MA 161 EXAM 1 Fall 2010 7. Solve for x: m2 —£E—- 6 > 0. Name 8. If f(a3) = V4 —— 23:, what is the range of f‘l? FOL/mafia (37: Way{ [g A Em r? M 0%! @5va 91L”? % 19f» LX 27/5) 22> _2>< W; (2. 2 ~44" <4. 90) 2:] V Page 5/9 A. (—oo,oo) B. (—oo,——3) U (2,00) @-—oo,—2) U (3, 00) D. (—oo,3) E. (—2,3) A. [2, 00) B. [0, oo) @(—oo,21 D. [0,2] E. (0, 2) MA 161 EXAM 1 Fall 2010 1 9. Solve the equation 84—2” 2 —. 9.4 .0 E? Q3 ,_. $3 93 H- (D LT.‘ ’5‘ l ‘3»: “W14 (X “NJKX m2) k 99 ml WWW, W -l % ..,_,_, 2 ‘7’ ”I ’2, Name Bm=2-21n2 C.m=1+1n2 D.m=1 E.m=2+1112 Page 6/9 MA 161 EXAM 1 Fall 2010 2a; 11. Evaluate $311+ 3:1: _ 3 fl/V;L A“ X») y ‘1” 3 ( )V'W (9471a yalflfl , a: + 3 _ 12. Compute $1375; m m ><(|+~,g Kw» 0O .><(2>< H43 w: l :flWQ'A .7 00 Name Page 7/9 MA 161 EXAM 1 111112010 Name _.~____~__m_ Page 8/9 V356 + 1 —— 2 \[T __ Z 13. Evaluate 01311111 w _ 1 = WW” :: “Q? m a 3 W , A. — .1 11,; £33le 1 EX? 1%; 32 \H’ Xvi Q31: +1. 13' '2‘ 3 .1 2A 2x + l 1, L1 @2 “ ”,1: l W w) (m. +24) ”43 E. —— f g (314:1) 2 34‘1””) I “W TMW 7 (>70 [ J??? +2) 11 +417 4 14. If _ 3:0 + a, if a: s 1 f($)‘{ «m, ifm>1 and if f is continuous at :c = 1, what is a ? A. 2 M Em, 117 B. 1 valm’afl >431“ (2X 472) 3+Q (1—1 M D. —2 Kym f”: 2111+ WW“! : J24 : 1 E3 X») i + >9”) I MA 161 EXAM 1 15. HA = lim Fall 2010 Name ‘5” +1andB: 11m ’m x—’—°° m2 + 4 x—wo m2+4 + 1, then A.A=1, B=—~1 O 5 _M B.A=—~1,B=l \ZVfX 4“” ‘(XL(‘:%) FJHW“ C.A=2,B=O ”jumm_ .1” [ [I‘IK(RX 40 DA=0,B O _.. »>< mg» «i: ' E W ”23”” [ 2% Week; :7; y W \ 71.?0 X J I + 71%» WW” A; W egg: Jr )3 ”MAW“ :0 was?” {Wu/3L" ‘ 16. Evaluate gang Egg—:33- 3 A __ 2:“ l ”‘L’ #3:"{12 : :1? w j, .:: [ML/372T '47 ”l : p.13 D.1+\/§ “0+6: H,m , 5;: i Page 9/9 E. The limit does not exist. is (it"d“; MSLLE {LE/7L >4 :9 ...
View Full Document

{[ snackBarMessage ]}