Sol-161E2-F2010 - MA 161 EXAM 2 Fall 2010 Page 1/8 Name...

Info iconThis preview shows pages 1–8. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MA 161 EXAM 2 Fall 2010 Page 1/8 Name 10-digit PUID RECITATION SectiOn Number and time Recitation Instructor Lecturer Instructions: 1. Fill in all the information requested above and on the scantron sheet. On the scantron sheet also fill in the little circles for your name, section number and PUID. 2. This booklet contains 14 problems, each worth 7 points (except problems 10 and 14 are worth 8 points each). The maximum score is 100 points. The test booklet has 8 pages, including this one. 3. For each problem mark your answer on the scantron sheet and also circle it in this booklet. 4. Work only on the pages of this booklet. 5. Books, notes, calculators or any electronic devices are not to be used on this test. 6. At the end turn in your exam and scantron sheet to your recitation instructor. MA 161 EXAM 2 Fall 2010 Name mm Page 2/8 1) The position of a particle moving along a line is s = 4 + «t— - ln(t + l), for t 2 0. For what t is the velocity equal to 0. 2 V; d: 1 I :; Hi "’2 - jij (W? Z 47“ lie—H) flee) ' A)t= Ham “a JVWWO “we “by”?! Pam; @t21 l E)t=4 2) If the graph of y = f is 1%” X 4 l) and J 5ng M) m a. 'which graph represents the graph of f’ T I y Mléwwemw MA 161 EXAM 2 Fall 2010 Name __._—_____...__... Page 3/8 3 2 3) For which values of m is the tangent line to the curve y = .92. + 3;. parallel to the line 3; z 251;. a» ; 2 2 a (U = —2) l 3 L B) :1: = 2, ”.1 Z €33L+% fig? £33K+>< C)a:=3,1 E) 93 : _21"1 WW ages?“ flmxww W> >3“va lo ——-=—->> szflxfl ) 3:5; w>x3~lli MA 161 EXAM 2 Fall 2010 Name __.__—___..__ Page 4/8 5) If y(:z:) = 2133/2 In as, compute y’ I ve:2%%xQfl&w t2x% % Qiifi : val/Qw t» 53491 :‘ gp/M aka “2%? E)8+61n4 : efiz Ht 6) Compute the slope of the tangent line of the curve y = 1 x at ‘ V w ($602)?) (I' + 9"" A) %’ Y4 W fl ([+QQXBL eLt><3)iQ:LQQ30 W 2 ) V E 3 4 , \L -» é Eh , M. MA 161 EXAM 2 Fall 2010 Name _M. Page 5/8 7) If the position of a. particle on a. line at time t is Isa—:11, What is the average velocity during the interval 0 g t _<_ 2. (L: A —1 Le)? 21%;) “t ) £3 ”'+ i B) 1 S(2) ~ 029 _V 7: e f 10 W W’ 7 3 f 1 7—1 1: g 5 L :: I; [O 8) If f(w)=10g4 m3, 2%“) = 1 L A) 3 £K/X)": $011114 3 .._ X Inf” B) $3 1114 C) 311:2 ln4 :: g (D) ) 3 WWWW $111 4 X E) 3932 MA 161 EXAM 2 Fall 2010 Name —___..___......___._ Page 6/8 9) A bacteria population triples every 2 hours. How long does it take a population of 200 bacteria to grow to 1500? lat n A) 2 (fin—335) {\m‘plg: media“ 2 B) 2 < on l ' WWW, n15 :Ewifiég ~ will W) We) 3" 100 “93‘ P???) 2m 11f a; l t m 2 (3g) éollrc 452V I: N l ’5me 1": 3ft J) I; : * E 6, “ya :: /& [2) d 10) Ifyisadifferentiable function ofcc and wy—(m+y)2+\/§+19=O, find a: at the point(l,4). 8 (Dillgfamle mm rtlglefil” in xx :> A) ‘g A Wig (Mg) w- 2»(')<+L)(l+é% 5i» 3:9 24 W / a5 + 2J3? ii @a (M a > > 3:: q, fi I‘ll I BF; 4+flw1§1+4% Let ' d 4, f5 Llwtmf; flow-(oi arj‘gw; (A ,3; (l w W 4 a w?” : ,Ei tr i W" é “9 if; “3%; 2g:— MA 161 EXAM 2 Fall 2010 Name —__....._._— Page 7/8 dy_ = _1 . ----—-~ .— 11)Ify tan (51119:),then do; A) 00390 + cotmcscrz: %‘/% fl ‘ (Q) X) COS (I; \ C 1+9” 1 1+ sin2 in :1: D) 1—532 12) If f(a:) 2 (0082103, then f’(7T/3) = PM j: 30» ZX>L(WS”‘ M (2") : (“:V)L(* D)3 ‘ : w gag; 2 3? ‘T MA 161 EXAM 2 Fall 2010 Name m Page 8/8 13) If M) = 2:51”, then f’(a,-) = SI K M) 1" g X M f” (SMXAU ’3 {El} :“ (C05¥)(xgd)+ (S‘k*)(§¥:) :1; @f’(a:) = main” (cosmlnm-l— 0) f’(rv) : comm) (3) A) f’(a:) = xsmx ((30812 + a: D) f’(sc) : mSinm—1(sinm) Ma $0.53: {2m BMW) + (gagflfl E)f'(m>=xsm(cosm) 14) A particle has position 3 at time t given by 3(t) = g t3 —~ 3252 + 8t + 161. On the time interval [0, 5], when is the particle slowing up? L f , A 0,2 U 4, 5 g‘zaz—Ewémg *VdWa ” H) W B) (2, 3) U (4, 5) g :~ 2 :3 @0a U (3, , D) (2,4) gogggagpée C km: (W “TM (WEWMQ (0, Z) W (31%) ...
View Full Document

This note was uploaded on 09/14/2011 for the course MATH 16100 taught by Professor Juan during the Spring '10 term at Purdue University.

Page1 / 8

Sol-161E2-F2010 - MA 161 EXAM 2 Fall 2010 Page 1/8 Name...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online