Sol-161FE-F2008

Sol-161FE-F2008 - MA 161 FINAL EXAM 01 Sal/d TL URI 3 Fall...

Info iconThis preview shows pages 1–14. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 14
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MA 161 FINAL EXAM 01 Sal/d TL URI 3 Fall 2008 Page 1/ 14 Name ten—digit Student ID number Lecture Time Recitation Instructor Section Number Instructions: 1. Fill in all the information requested above. On the scantron sheet fill in your name, student ID number, and the section number of your recitation with an extra 0 at the left. See list below. Blacken the correct circles. 2. On the bottom under Test / Quiz Number, write 02 and fill in the little circles. 3. This booklet contains 25 problems, each worth 8 points. The maximum score is 200 points. 4. For each problem mark your answer on the scantron sheet and also circle it in this booklet. 5. Work only on the pages of this booklet. 6. Books, notes, calculators are not to be used on this test. 7. At the end turn in your exam and scantron sheet to your recitation instructor. TA Lecture time Rec. time Sect. # TA Yun Ge 11:30 7:30 0001 Chris Bush 1:30 8:30 0002 Huijie Wang 11:30 9:30 0003 Chi Weng Cheong. 1:30 10:30 0004 Jing Feng Lau 1:30 VVetlJan.Lin 11:30 11:30 0005 12:30 0006 Raakesh Pankanti 1:30 Feng Chen 1L30 L30 0007 2:30 0008 Phani Surapaneni 1:30 Abhijeet Bhalerao 11:30 3:30 0009 3 4:30 0010 Himanshu Markandeya 1:30 I<eVin hdugo 11:30 or 1:30 1:30 0027 Lecture time Rec. time 7:30 8:30 8:30 9:30 10:30 11:30 12:30 1:30 2:30 3:30 4:30 Sect.## 0011 0012 0031 0013 0014 0015 0016 0017 0018 0019 0020 MA 161FINAL EXAM 01 Fall 2008 Name: 1. The domain of the function y = 1n(2”:/3) is )4 \k f. Al(1z\ -=’-> 2370 by!» M M VNMWS X 2. Express tan(sin_1(:1:)) as an algebraic function of x. 9 f; ém'\ (fl) Page 2/14 All real numbers. B.:E>O 2 C. x>1n 3 D. m>1n l E. —— JI> 3 A. 1 x/l —:132 B. 1 1:2—1 @ 9” W D. x/l —:I;2 E x/l—m2 MA 161FINAL EXAM 01 Fa112008 Name: I Page 3/14 1- M- o nghmflw W 3. $31112 2+$_ 5 \ A.oo +2, 13- “00 \ L L X hm : PM 1% C. O 1 " \ “La-— w- ... J..— E. l ’yNLMr-Z “7% W L} 2 ##6##» jqu .1; MW ,_,,‘ J— W '5"? 2M w:wfi )4"3 "i 2+» x x~==> ~L D Ari M m a W fwwflwflmww M M L L ~ : «(wasij I ‘ “M = “M : M qt“ may X» a, 2+x X4 «1 X/L’L) ' ,\ I 4 \ m J ’L “g (73 f; I» % (m2?) w k} MMMMMMWW - m2 + 2 4' mgr—moo m z A. 00 B. -oo NOR“ X40 “’9 5L; IN T: “X m, 0.0 Wwfimm “ M A D. l “M = \/X7..( Hr :52:er @_1 XII-5,09 X Xfléficp W W x x :— MM fiZ—J‘ + 5;)“ #5.“,99 Y‘ X W ’ "‘M *>< J 1+ “%i \/\——~> =— 09 x ‘ :— L‘ 2- “ WM m M #VWY» —""\/i‘%m0 mml MA lBlFlNAL EXAM 01 Fall 2008 Name: I Page 4/14 cc 1 5. Find an equation of the tangent line to the curve, y = w 1 at the point (1, . + it: _ (24:1;th A y 2.; (1% Ow)” B $+2yz2 34”“ : 0W) “'C‘léll a: r ' C-x—2y= AM (I will}: Ll D. 4114—33: ’ @4y—m21 “MS/Ml EHJ. 1 -‘ 1’; z; {I M Ltngzy 1‘: X”! 6. The radius of a sphere is increasing at a rate of 2 Him/sec. How fast is the 4 volume increasing When the radius is 10 mm? (V = g 7F7“3) cl \’ WW“ A. 640% mm3 se kW in: Z 1 E; / C B. 160077 mm3/ sec wM ; Sly MW V :1 [0 MW , 0.10007rmm3/sec M 800w mm3/ sec E. 12007r mm3/ sec MA 161 FINAL EXAM 01 Fall 2008 Name: Page 5/ 14 7. Use a linear approximation (or differentials) to estimate \3/ 994. "3 A995 Lei” «Cm « xi? 1x / a», @1000, 13.9.8 “(lam v€w{xl;? %;‘x 3 C 1002 .‘ E998 LN) : 1L ((000) ‘t '(Z' [wool (xw |Dc>o> :2: [o 4-» 3;? (ye-loot) (444%) = to + ‘ (Macao) ZOD lo +/ it; (’95 lo we 0.01- H .— ':; 9,‘l§ 8. A population of bacteria doubles every 2 days. HOW long Will it take for the population to triple? Ki: ‘ 3 P< 1:; PKym“wwwmwwmmiu,“MM,me A- 21n(—2-) days Mgr-WW ~ 2 [a ' 2 ln '3 fl 2 —— days ~ lnx2 t 2 WOT: e C. 3 days LL g_ ;L I) Z :6 "> £2“ D 2k m) k D. 2.5days " E. 21116 days “a lPala \(grar PH?) “:1 Z M: eaat MA 161 FINAL EXAM 01 Fall 2008 Name: Page 6/ 14 9. If f(x) =1n(sin(ac2)), then f’(:c) : A sin(a:2) \ ‘ > ' 2m 005(562) ‘(3 M ‘3: B ( Cm >8” 2%) B. COW? g“ (XL) 7 ( \ / 1 2:1: sm(:v )) 2:1: (303(513,2 @ Sin(z2) WNW WMH-ww:~=w D 2:1: sin(:c2) CIA . cos(a:2) 211: E. __________ sin($2) COS(CE2) = QISinm, then = mcosac QIMX «(3M 3: X ,3 Cegx > gm: 6 2* PM , A vfihk) : VS ))((§YS\IAY~) +6£¥VLDHQ>D$81n$(::::1n$) E. xsina: __ STA ¥ ’ Yx §Tn$ 7K +QQ¥Y0W3> w @xsm 3" (cos 53111 x + sin a: $5 > MA 161 FINAL EXAM 01 Fall 2008 Name: ________________Page 7/14 11. Find an equation of the tangent line to the curve (:22 + y2)2 : 4:32;; at the point (3671/): (1,1) 0 Ayzl .4. as 2/)42} i)(w+2 42’): 3x +th1% B — d _ y—03 (534 9 3 :7 M Cy22x—l A ‘ ’ CL D 2—9: (WW; 2mm. :33) r 2% M :43: _, cl ,5 A ‘ > Q "l‘ g ‘3": "” g + LIL f; a 91.1} x 12. The absolute maximum value of the function f(:c) : on the interval [0, 2] ' x2 + 1 1s 2 «a IS CWWW’ W» 9,71 . A' 5 Wm M ,n .n B. 0 0(v\"\ca/L WMWAQWTE ‘ L C' 11 \Z x f mme "W’le \-XZ @5 '9‘ ‘14 @zfljv. 6&2“) 6‘“ [03:] l J2: é-M a/O'éobfifi WMM‘AM MW “y' flwf‘rl‘ MA 161FINAL EXAM 01 Fall 2008 Name: Page 8/14 13. Let f be a function Whose derivative f’ is given by f’(:z) : (m f 2)2;§4(ac + 2)5. Then f has a A. local minimum at as = 0 @local minimum at CE 2 ——2 0" C. local maximum at m = O D. local minimum at :1: : 2 E. local maximum at a: = 2 ,4 [Mom 0‘ [MM \(mlnlmUVn/L ml 14. (secm—-tana:)= 09 “m 9‘39 ‘. \lm ‘1” a 0.00 x91; (Coma Cm) D. —1 ' l : \M E3 ml; @574 % a w XmBL'; «9—4th MA 161FINAL EXAM 01 Fall 2008 Name: Page 9/14 15. A box with square base and open top must have a volume of 4000 cm3. If the cost of the material used is $1 / cmz, the smallest possible cost of the box is Z ” 4—000 A. $500 X Y) B. $600 VMATMM, 0003+ C $1000 4:: D $1200 Co'sl 3 :3 OWL (gmrfg‘amj E. $2000 - 2%; l an” X” 3 .2 -—(lo 000 3 [Q 00L) LC: w 2X “19,4.“00: '9 w; x L ’m :2 w) X :2. “in?” V4 )4 A$ m) X 2: LO fit 0 a Z (9000 mammmunt m C0») {20 warp : W00 ; .20 16. If /: f(a:)dm = 2 and /02 f(a:)dzc = 3, then /_: f(a:)dm = __1 V B. 1 0 2. O C. *5 j WCM cL>< ‘1 g «000 A?“ “l” j (EN 344 13.5 “1 =4, 2’ E. «3 :2: S1 9063041 “W” llrfim) AK 0,; 5 MA 161FINAL EXAM 01 Fall 2008 Name: . Page 10/ 14 12 I 6 \ 2 V2 Big :30 [va +\)A)g : y l C% 3 : L ,2: L D; C“ 3* M o E: \ £ 3 7973 "H 2 3. 3 B. —1 W MU W Mm, 3» Ammg W50 u[o\:—D MA. MEL) :Tr D. —2 BO W; w k g §|\w[l‘fi) A»; S: j (GAO/‘06: 47’”) O 0 : “l7; : QHA (A gm, Tr” MA 161FINAL EXAM 01 Fall 2008 Name: 1 / $2<$3 + 1)].7dm : O ‘ L ‘7 Z n L g Xbifl) AX ”; j Ux ngtA o \2 9’ m 1 .911 \Q ,. J- \g’ lg) : '2 “ml n gt (2 " ggf, .9. 21: 20- Ifg(w)=/O etzdt, then g’( )2 E 2 L617, Page 11/14 MA 161FINAL EXAM 01 Fall 2008 Name: _______________Page 12 /14 21. The function 2:63 — sz — 243: + 1 is increasing on (wk me ngnxz‘w x H «9 Wang (m (—7 cpl-WI) 6M {LE/04‘ 22. The function :54 — 63:3 + 12:1:2 + l is concave down on . —oo, 1) only ' I .3: Lle 3 _ 2" A( URL {m X W «win H _ é)me \ l W ; [’FXE‘ "i’ Zq’X 0- (2,00) only u m L D. (—00, —1) and (2, 00) CWA “F [Nd W [3% ’géx + 2% E. (—oo,1) and (2,00) MA 161FINAL EXAM 01 Fall 2008 Name: WPage 13/14 23. The graph of the function f is given below, and lim f(:1:) = a, lirn f(a:) : b. —+1+ 93—d— Which of the following is true? as ‘ MA 16100 Fall 2008 1. The graph of y = f is shown below. W" l A.a=2, b=1 a=1, b=2 C.a:dne,b=dne D.a=dne,b:2 E. a = 1, b : dne (dne means “does not exist”) 24. The graph of the function y = sin(ac) is shrunk horizontally by a factor of 2, then translated 1 unit to left. The resulting graph is that of ' 1 A.y=sin<§ 33—1—1), gesmfu::.gw (9:: Wm), s émmwgm B'yzsm<‘2‘$‘1) C.y:sin<%m+2> D. =sin(2a:+1) (3: 'H) : §N(Z(X7Hj\ E.:=sin(2cc+2) :-§m_(zx+L§ MA l6lFINAL EXAM 01 Fall 2008 Name: Page 14/14 25. For What value of the constant c is the function f continuous on (—00, oo)? 2c$2+3$ ifzc<2 x3+cm2 ifmZQ f(:r) = { 0 3A”; :5; 7 D. 2 WM» ya 1-” X...) 2 i” Vghc) ‘1 E. No value of 0 makes f ' continuous on (—00, 00) WW ‘Cm a: Wit finial ":3 HF? ...
View Full Document

Page1 / 14

Sol-161FE-F2008 - MA 161 FINAL EXAM 01 Sal/d TL URI 3 Fall...

This preview shows document pages 1 - 14. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online