snapthrough

# snapthrough - kes = 176 N/m stiffness of top spring which...

This preview shows page 1. Sign up to view the full content.

% Code for MEAM 147 % Lab 4: Force Equilibrium and Static Equilibrium: Snap-through Buckling % Clear the workspace. clear % Initial values: measured from system. % FIX THESE TO MATCH YOUR SYSTEM. bo = 0.05; % m do = 0.08; % m thetao = 30; % degrees % More initial values, derived from above numbers. ao = bo * tand(thetao); co = sqrt(ao^2 + bo^2); % Make displacement vector. d = (do:0.001:0.15)'; % Compute more aspects of the motion. a = ao + do - d; b = ones(length(d), 1) * bo; theta = 180 / pi * atan2(a,b); c = sqrt(a.^2 + b.^2); % Buckling system constants. % FIX THESE TO MATCH YOUR SYSTEM.
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: kes = 176; % N/m, stiffness of top spring, which is in tension kcs = 892; % N/m, stiffness of the three lower springs, which are in compression % Compute extension spring force. Fes = kes * (d - do); % Compute individual compression spring force. Fcs = kcs * (co - c); % Compute weight required to hold system stable at each of these spots. % Currently set equal to one. FIX THIS. Fg = ones(length(d)); % Plot theoretical result of Fg vs. d. figure(1); plot(d, Fg, '-') xlabel('Displacement (m)') ylabel('Weight (N)') title('Snap-Through Buckling')...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online