CME 3.1 - CME 1.1(required for CME 3.1-A =-1 0;0-2 Define...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: %------------------------------------------------% CME 1.1 (required for CME 3.1 %------------------------------------------------A = [-1 0;0 -2]; % Define the state-space realization B = [1;sqrt(2)]; C = [1 -(sqrt(2)/2)]; D = [0]; JbkR = ss(A,B,C,D); % Define model from state-space JbkRtf = tf(JbkR); % Convert to transfer function JbkRzpk = zpk(JbkR); % Convert to zero-pole description [num,den] = tfdata(JbkR,'v'); % Extract transfer function description [z,p,k] = zpkdata(JbkR,'v'); % Extract zero-pole description JbkRss = ss(JbkRtf) % Convert to state-space description %-----------------------------------------------------% CME 3.1 %-----------------------------------------------------P = ctrb(JbkR); % Calculate % controllability % matrix P if (rank(P) == size(A,1)) % Logic to assess % controllability disp('System is controllable.'); else disp('System is NOT controllable.'); end P1 = [B A*B]; % Check P via the % formula CharPoly = poly(A); % Determine the system % characteristic polynomial a1 = CharPoly(2); % Extract a1 Pccfi = [a1 1;1 0]; % Calculate the inverse of % matrix Pccf Tccf = P*Pccfi; % Calculate the CCF % transformation matrix Accf = inv(Tccf)*A*Tccf; % Transform to CCF via % formula Bccf = inv(Tccf)*B; Cccf = C*Tccf; Dccf = D; CME 3.1a The System is controllable CM 3.1b Cccf = 1.0 0.000 ...
View Full Document

This note was uploaded on 09/14/2011 for the course ELEN 236 taught by Professor Dr.migdathodzic during the Spring '11 term at Santa Clara.

Page1 / 2

CME 3.1 - CME 1.1(required for CME 3.1-A =-1 0;0-2 Define...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online