ETSslides-long - ElectronTransportandOxidative...

Info iconThis preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
Electron Transport and Oxidative  Electron Transport and Oxidative  Phosphorylation - Introduction Phosphorylation - Introduction    most cellular energy derives from  oxidizing dietary “fuel”  fuel + O   energy oxidation  -transfer of electrons to  acceptor    aerobic acceptor  =  oxygen
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
--  Efficient Efficient  -- very  efficient efficient  process- recall living  cells efficiency is ~ 41%, compared to  about 3% efficiency when burning oil or  gasoline  HOW? --  Separating Separating  carbohydrates, lipids, etc.  from oxygen to optimize recover of energy --  Stepwise Stepwise  recovery of energy from  oxidation of NADH and FADH  during 
Background image of page 2
Questions Questions  What are these steps? –  Electron Transport  Electron Transport  System (ETS) System (ETS) How is this energy used to synthesize ATP? How is the energy yield maximized?
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Mitochondrion Mitochondrion  -- A. football shaped (1-2μ), 1-1000s in  each cell B. electron transport and oxidative phosphorylation Cytosol
Background image of page 4
C.  Outer membrane Outer membrane - - permeable to small molecules D.  Inner membrane Inner membrane - - electron transport enzymes embedded;   also ATP synthase   Cristae increase area   Impermeable to small molecules Integrity required Integrity required     for coupling ETS to  ATP synthesis Cytosol
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
E.  Matrix Matrix TCA enzymes, other  enzymes; also ATP, ADP, NAD , NADH, 
Background image of page 6
Definitions: Oxidation-Reduction Definitions: Oxidation-Reduction    = transfer of electrons from electron  donor  to electron acceptor Example:    A:H + B = A + B:H                 donor     acceptor   electron  donor donor   (reducing agent, reductant) is  itself oxidized electron  acceptor acceptor  (oxidizing   agent, oxidant) is itself reduced
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
-- both oxidation and reduction must  occur simultaneously  --one compound donates electrons to (reduces) a second compound; the second accepts electrons from  (oxidizes) the first. Redox Redox /oxidation-reduction -- electrons always move from compounds  with lower  reduction potential  to compounds  with higher reduction potential ( more  positive).
Background image of page 8
Biological redox  Biological redox  = Two half-reactions             A:H                       A A:H                       A        Reductant             Oxidant   +   e               B                        B:H B                        B:H      Oxidant  +  e     Reductant    (acceptor)            (donor)
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
********************************************************* ** So, the more  negative  the reduction potential  is, the easier a reductant can reduce an oxidant  and The more  positive  the reductive potential is, the 
Background image of page 10
Image of page 11
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 85

ETSslides-long - ElectronTransportandOxidative...

This preview shows document pages 1 - 11. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online