ETSslides - ElectronTransportandOxidative...

Info iconThis preview shows pages 1–13. Sign up to view the full content.

View Full Document Right Arrow Icon
Electron Transport and Oxidative  Electron Transport and Oxidative  Phosphorylation  Phosphorylation  *Introduction* *Introduction*   stage 3 of respiration NADH & FADH oxidized, electrons are  “carried” (ETS)   energy in form of ATP  (Ox/Phos)    aerobic acceptor  =  oxygen
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Mitochondrion Mitochondrion  -- A. football shaped (1-2μ), 1-1000s in  each cell B. electron transport and oxidative phosphorylation Cytosol
Background image of page 2
C.  Outer membrane Outer membrane - - permeable to small molecules D.  Inner membrane Inner membrane - - electron transport enzymes embedded;   also ATP synthase   Cristae increase area   Impermeable to small molecules Integrity required Integrity required     for coupling ETS to  ATP synthesis Cytosol
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
E.  Matrix Matrix TCA enzymes, other  enzymes; also ATP, ADP, NAD , NADH, 
Background image of page 4
The  Electron Transport System  Electron Transport System  is the mechanism  the cell uses to convert the energy in NADH and  FADH 2  into ATP. Electrons flow along an energy gradient via  carriers in  one direction  from a higher reducing  potential (greater tendency to donate electrons) to a  lower reducing potential (greater tendency to accept  electrons). The ultimate acceptor is molecular oxygen.   
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
-- The overall voltage drop from  NADH         E °′  = -(-0.32 V) to  O        Eº  = +0.82 V  is                  = 1.14 V
Background image of page 6
-- This corresponds to a large free energy change of   G °′  = - n F E  =  -220 kJ/mole    (n =2)   -- Since ATP requires 30.5 kJ/mole to form from ADP, more than enough energy is available to  synthesize 3 ATPs from the oxidation of NADH.
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
 NADH Dehydrogenase-  Complex I NADH-CoQ oxidoreductase
Background image of page 8
NAD /NADH Never covalently bound- freely diffusible Nicotinamide                  
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Flavin mononucleotide = FMN Flavin adenine dinucleotide = FAD Riboflavin = ring + ribitol i soalloxazine ring ribitol
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
2H + +2e Coenzyme Q Coenzyme Q Coenzyme Q = Ubiquinone Coenzyme Q = Ubiquinone a lipid in inner membrane  carries electrons  polyisoprene tail   moves freely within membrane CoQ CoQH 2 (reduced form)
Background image of page 12
Image of page 13
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 44

ETSslides - ElectronTransportandOxidative...

This preview shows document pages 1 - 13. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online