ASE 365 - Lecture 8

ASE 365 - Lecture 8 - Rotating unbalance k c x(t m e M m...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Rotating unbalance k c x(t ) m e M- m ωt ω How to get an EOM for x(t)? FBD 2 f H f V z(t ) H f z m- = What is z(t)? For Newton’s 2nd law, z(t) must be an absolute (inertial) displacement. f S f D FBD 1 f H f V R A R B W ( 29 t e t x m x c kx f f f x m M H D S ϖ ϖ sin ) ( ) ( 2---- = +-- =- t e m kx x c x M ϖ ϖ sin 2 = + + : EOM t e M m x x x M n n ϖ ϖ ϖ ζϖ sin 2 2 2 = + + : by Divide ( 29 ( 29 [ ] 2 2 1 2 2 2 2 2 ) / ( 1 ) / ( 2 tan ) / ( 2 ) / ( 1 ) ( ) sin( ) ( ) ( sin 2 n n n n p n n i G t i G A t x t A x x x n ϖ ϖ ϖ ϖ ζ φ ϖ ϖ ζ ϖ ϖ ϖ φ ϖ ϖ ϖ ϖ ϖ ζϖ- = +- =- = = + +- and with , which for : with Compare . ) ( ) sin( ) ( ) ( 2 φ ϖ φ ϖ ϖ ϖ ϖ and same with now So i G t i G e M m t x n p- = (ω/ωn)2 | G(iω)| 1 1 ω/ωn Harmonic base motion k c m x(t) y(t ) FBD fS fD m y y x x x n n n n 2 2 2 2 ϖ ζϖ ϖ ζϖ + = + + : Solve ky y c kx x c x m + = + + : EOM . ) ( ) ( ) ( ) ( t i p t i e i X t x Ae t y t y ϖ ϖ ϖ = = , use , harmonic For ( 29 ( 29 t i n n t i n n Ae i e i X i ϖ ϖ ϖ ζϖ ϖ ϖ ϖ ζϖ ϖ ϖ 2 2 2 2 ) ( 2 + = + +- φ ϖ ϖ ϖ ζϖ ϖ ζϖ ϖ ϖ ϖ ζϖ ϖ ζϖ ϖ ϖ ϖ ζϖ ϖ ϖ i n n n n n n n n e i X A i G i A i i A i i i X- = + = +- + = + +- + = ) ( ) ( ) / 2 1 ( / 2 ) / ( 1 / 2 1 2 2 ) ( 2 2 2 2 ( 29 +- =- - =--- 2 2 3 1 1 2 1 ) / 2 ( ) / ( 1 ) / ( 2 tan / 2 tan ) / ( 1 / 2 tan n n n n n n ϖ ζϖ ϖ ϖ ϖ ϖ ζ ϖ ζϖ ϖ ϖ ϖ ζϖ φ and ( 29 A i G A i X e i X e i X t x n n n n t i t i p ) ( ) / 2 ( 1 ) / 2 ( ) / ( 1 ) / 2 ( 1 ) ( ) ( ) ( ) ( 2 2 2 2 2 ) ( ϖ ϖ ζϖ ϖ ζϖ ϖ ϖ ϖ ζϖ ϖ ϖ ϖ φ ϖ ϖ + = +- + = = =- where So Vibration isolation k c m x F(t)=F0cos ωt Force transmitted to base: x c kx f f F D S tr + = + = amplitude. s ' in interested are We . sinusoidal is and , sinusoidal are and so , that know We tr tr p F x c kx F x c kx t i G A t x + =- = ) cos( ) ( ) ( φ ϖ ϖ fS fD . so , Then . if easier is Analysis t i p...
View Full Document

This note was uploaded on 09/18/2011 for the course ASE 365 taught by Professor Staff during the Spring '10 term at University of Texas.

Page1 / 21

ASE 365 - Lecture 8 - Rotating unbalance k c x(t m e M m...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online