ASE 365 - Lecture 17

# ASE 365 - Lecture 17 - Mass suspended in a moving frame for...

This preview shows pages 1–6. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Mass suspended in a moving frame . for EOMs Derive m 3 4 5 k k k m ) ( t x ) ( t y ) ( t x ) ( t y ? if vibrate does How ) ( ) ( = = t y t x m 3 4 5 k k k m ) ( t x ) ( t y ) ( t x ) ( t y gravity) ignore m eq' to (relative : FBD- 1 S F 2 S F 3 S F ) ( 1 x x k F S- = ) ( 2 y y k F S- = )] ( 6 . ) ( 8 . [ ] ˆ ) ( ˆ ) [( ) ˆ 6 . ˆ 8 . ( 3 y y x x k y y x x k k F S- +- =- +- ⋅ + = ⋅ = j i j i elongation )] ( 6 . ) ( 8 . [ 8 . ) ( 8 . 3 1 y y x x k x x k F F F x m S S x- +--- =- = = ∑ )] ( 6 . ) ( 8 . [ 6 . ) ( 6 . 3 2 y y x x k y y k F F F y m S S y- +--- =- = = ∑ = + y x k y x k y x m m 36 . 1 48 . 48 . 64 . 1 36 . 1 48 . 48 . 64 . 1 : EOMs = + y x k y x k y x m m 36 . 1 48 . 48 . 64 . 1 36 . 1 48 . 48 . 64 . 1 : EOMs . assume ; : vibration Free ) cos( ) ( ) ( ) ( ) ( φ ϖ - = = = t y x t y t x t y t x =- + - ) cos( 36 . 1 48 . 48 . 64 . 1 1 1 2 φ ϖ ϖ t y x k m : become EOMs . if only solution Nontrivial ) det( 2 =- ≠ M K y x ϖ ) 2 )( ( 2 3 ) 36 . 1 ( 48 . 48 . ) 64 . 1 ( ) det( 2 2 2 2 4 2 2 2 2 =-- = +- =-- =- k m k m k mk m m k k k m k M K ϖ ϖ ϖ ϖ ϖ ϖ ϖ ? in about What . , ) cos( ) ( ) ( 2 2 2 2 1 φ ϖ ϖ ϖ- = = = t y x t y t x y x m k m k - = = = - 1 75 . 36 . 48 . 48 . 64 . ) ( 1 1 1 2 1 y x y x k k k k y x M K : From ϖ = = -- = - 75 . 1 64 . 48 . 48 . 36 . ) ( 2 2 2 2 2 y x y x k k k k y x M K : From ϖ . conditions initial by determined s ' and s ' with : form the in be must vibration Free i i B A t B t A t B t A t y t x ) sin cos ( 75 . 1 ) sin cos ( 1 75 . ) ( ) ( 2 2 2 2 1 1 1 1 ϖ ϖ ϖ ϖ + + + - = Modify the previous example… k m m ) k x2 x 1 k = +-- + + ) 1 ( ) 1 ( 2 1 2 1 x x k k k k x x m m α α α α ) 1 ( ) 1 ( ) det( , 2 2 2 =- +--- + =- ≡ γ α α α γ α ϖ ϖ γ k M K k m If [ ] 2 1 ) 1 ( 2 ) 1 ( 2 2 1 2 2 2 2 2 2 = + + +- = =- + +- + + =- + α γ α γ α γ α γ α α α γ α- ) (1 gives m k m k ) 2 1 ( , 2 1 , 1 1 ) 2 1 ( ) 1 ( 1 2 2 2 1 2 1 2 2 , 1 α ϖ ϖ α γ γ α α...
View Full Document

{[ snackBarMessage ]}

### Page1 / 26

ASE 365 - Lecture 17 - Mass suspended in a moving frame for...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online