{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

ASE 365 - Lecture 36

# ASE 365 - Lecture 36 - Example U(x s s s r r r AU U EA AU U...

This preview shows pages 1–5. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: : Example U(x) s s s r r r AU U EA AU U EA ρ ϖ ρ ϖ 2 2 ) ( ) ( = ′ ′- = ′ ′- dx AU U dx U EA U U EA U dx U EA U dx AU U dx U EA U U EA U dx U EA U s L r s s L r L s r s L r r L s r r L s L r s r L s ρ ϖ ρ ϖ ∫ ∫ ∫ ∫ ∫ ∫ = ′ ′ + ′- = ′ ′- = ′ ′ + ′- = ′ ′- 2 2 ) ( ) ( L L L L L U k U m U EA u k u m u EA- = ′ →-- = ′ 2 ) ( ϖ : BC k m dx AU U dx U EA U U k U U m U dx AU U dx U EA U U k U U m U s L r s s L r L s r L s s r r L s r r L s L r s L r r s ρ ϖ ϖ ρ ϖ ϖ ∫ ∫ ∫ ∫ = ′ ′ + +- = ′ ′ + +- 2 2 2 2 + = + ′ ′ + = + ′ ′ ∫ ∫ ∫ ∫ L s r s L r s L s r s L r L r s r L s r L r s r L s U m U dx AU U U k U dx U EA U U m U dx AU U U k U dx U EA U ρ ϖ ρ ϖ 2 2 ( 29 ( 29 ( 29 ( 29 ] [ , ] [ , ] [ , ] [ , 2 2 s r s s r r s r r s U U U U U U U U M K M K ϖ ϖ = = : form) symmetric (in is This rs r r rs r L s r s L r rs r L r s r L s m k U k U dx U EA U m U m U dx AU U δ ϖ δ δ ρ 2 = = + ′ ′ = + ∫ ∫ : relations ity Orthogonal Continuous systems—response F K M = + )] , ( [ )] , ( [ t x u t x u : problem value Boundary " " , admissible any For : theorem" Expansion " ) ( ) ( ) ( ) ( lim ) , ( ) , ( 1 1 t x U t x U t x u t x u r r r r n r r n η η ∑ ∑ ∞ = = ∞ → = = F K M = + ∑ ∑ ∞ = ∞ = 1 1 ) ( )] ( [ ) ( )] ( [ r r r r r r t x U t x U η η : becomes BVP ( 29 ( 29 ( 29 . and then , let we If rs r r rs r s r rs r s r r r r m k U U m U U U U m δ ϖ δ δ 2 ] [ , ] [ , ] [ , = = = ≡ K M M ( 29 ( 29 ( 29 F K M , ) ( ] [ , ) ( ] [ , ) , ( 1 1 s r r r s r r r s s U t U U t U U U = + ⋅ ∑ ∑ ∞ = ∞ = η η : Take , 2 , 1 ), ( ) ( ) ( 2 = = + s t N t m t m s s s s s s η ϖ η : EOMs Modal ICs. modal need we : EOMs modal For , 2 , 1 ), ( ) ( ) ( 2 = = + s t N t m t m s s s s s s η ϖ η ∑ ∑ ∞ = ∞ = = = = = 1 1 ) ( ) ( ) , ( ) ( ) ( ) , ( r r r r r r x U x u x u x U x u x u η η , : profiles velocity and nt displaceme initial from are These ( 29 ( 29 ( 29 ( 29 1 1 1 1 ] [ , )] ( [ , ] [ , )] ( [ , s s r r sr s r r r s s s s r r sr s r r r s s...
View Full Document

{[ snackBarMessage ]}

### Page1 / 22

ASE 365 - Lecture 36 - Example U(x s s s r r r AU U EA AU U...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online