{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

271E2-F2004

# 271E2-F2004 - MA 271 EXAM 2 FALL 2004 Name —_— 1 Find...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MA 271 EXAM 2 FALL 2004 Name —_— 1. Find the limit of each convergent sequence. (a) a _1—10n+’n2 7“ 3722—8 ' (b) an 2 n — V722 — 2n. -2 1 sm (5) c =——————————. ()an 1—cos(%) 2. Find the sum of the series Z(—1)n+1 —3- 2". n=1 3. Determine which of the series converge absolutely, converge conditionally, or diverge. Give reason for your answers. 00 <a> Z —(‘1;Zfi‘ ” n=1 Z (_1)n2n3n nn 0° —1”n!2 oo _1 n (d) E 71((ln3L)2 (e) 2 003/271" 4. Find the Taylor polynomial of (1 + x2) coszv of order 7 at x = 0. 5. Find the interval of convergence of the power series i (217— 3)" “:1 n5“ ' \$2 \$4 \$271. 6. The approximation cosa: ~ 1 ~ + +---+(‘1)n (2n)! smallest n needed to estimate cos(0.1) with an error of less than 10‘”. is used. Determine the 7. Find a series solution for y’ —— my 2 0, y(0) = 1. 8. lim 7” _ y . (m,y)—>(1,1) x2 — 212 9. Compute 37f;c +yfy + zfz. f(m,y,z) = my+yz+zx. 10. Find 631—7: at t 2 0 if 10 = sin(a:y + 7r), :1: 2 et, and y = ln(t + l). ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 2

271E2-F2004 - MA 271 EXAM 2 FALL 2004 Name —_— 1 Find...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online