Exam _1_sol

Exam _1_sol - 1 Exam #1. MAE 650:443 Vibration and Control...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1 Exam #1. MAE 650:443 Vibration and Control Consider a simple freely Vibrating mass—spring-damper system. (a) Draw the fi‘ee-bod§—diagra1n, and derive the governing equation. (b)Derive the characteristic equation for the system. ’ (c)Find the possible solutions to the characteristic equation as a function of g. I i (d) How the displacement with respect to time would look like for each case, i.e. under damped ,‘ over damped, and critical (draw). \‘W/ (l C! W [5‘ 21‘ : (HQ “ii (LAB/‘2‘ 1"“ “kt-“(1‘) f f; l j Y‘fx l § x L i»: Ada-’1 c 45 :m._-4)(g—U $55.45} 4% 095+ if’XliCl K OC ’1 M ? H r) M {or} U ’ ‘ z i a: c e +- Z3tr1n’><f+:é~;¢<: o ‘- ‘ C ~ , 1 , ii '0 ' wt; “"1 c (“In " CA! h ’— Pmr‘i (l9) s SSMMQ M a, 3L 2 fl m N; ‘ (fl 0) 0!: Are SM? {MC [V 7%: 93% W2“ wall Ac“: 0 X’ A a ma 7" 7) K» ( r" P f \ . l .9fo AXLE/1‘ E (fir/QM” if?“ AK’L MMHWMW‘ 44 f '7“: €37 Vt - I? 2 , V 2* w a ,l a $104615; ‘ flax/cjbré f + 236‘!“ l" + (A74 9 C‘ l (5“ 0 ' - ---- am Qr'l (C) is C L 2 MW “ & {an JV (IMMU’LWJW r 2' l (2 I I 2’} g E (\\ a: \ < m \ 1w ‘ y w 5 a a r L ‘ J :r "a \/.Z, :1 VI": A tqui HM.“ - § 45/ r i E \ (fro/W'Afle i ~= J, a :2 w t " S f i - f l“ N n [’ S _. L ‘ J IQ Jr C (rm __/7 My me + z "'9 Y‘Ilr : % [Aim ) , a / it: i - . ‘ '7‘ is A ,. 1:"; at Ma Ma w A. w w E .2: L i~ J n a z\#~~ «r— v [ {K Qt) [\K—w— n f c , Li ; ("Ax \ \i i H L ( ‘ I )f 1 L l ,4 L...»—— "-vri'w"‘“——Mr—I i, b ‘5... V g «r F «it ’~ C’i'rl (Q4 3”“ jib-“1‘2” ‘ i A a 4 1L A (.4 V j 3 N1 FanJL i‘k—mmfizmfi‘" .1 M .{ " r- , A lii‘: Awe; “E /L\C ({J‘ [hi ’ i ‘ /.4‘ J A \ D A V -" L5,” \ who L /\ 5‘ V i ( /: I Q ’“ Q i— f Z. V A a ‘_ AWVJ (a) Write your interpretation in 1~2 sentence(s) for (i) Phase lag (ii) Viscous Damping (iii)Resonance (iv) Magnification factor B (V) Damped frequency (b) The solution for harmonicallyforced system with no damping is presented by: A 1 x(t) = —-———————2cos cut me) Describe What (i) g and (ii) if); mean and why they are important. 1... _ wn Part {a} 2 r i? w ; A, w 4 43,1?”56/ 5x5 6-; C"3*\‘“‘"E’€C" «2". P/IZCU‘C 5‘ flvc WAQIS‘C‘ Livy/i’lyéffélffi.é~4~¢. ’«fotw‘tium {OGJ J [C ’1 ~ \ N /) ‘ | Camqu \r'espcmc; zhs’tbmi’omeowKw _ J h f,’ i v i v D 4‘ , ’ 1 fl. ,n * ,t‘ r n 5‘) n0 “ ‘ <3 \ " ' i" M ( r I K ’(r' "-— ‘flJ: ’3'ij "5, ,.- 7/} 3!‘ ““\“~\ 6:" r iC!\\ Qb‘m r\ ~ (M) $56M iJU‘imfmnf 6 1.3 can» 6 we » WM ' 7- 3 ‘i “C W 0-» '1‘ - v \ J ' ' ‘ 9 - i | r ' i i i u: r , J’ ~ d Ii ’ Car/r7 1 z’\ (“.QVXS " 0“ C‘ Q “" “l a, A A? ' icy” ["1 [v’r'afi fret} I; OH)?“ J V1 O ' ' law/m. 9 ,3 (IJQKAKO {A . gloat/g?! +3 Ark: Ty’i H/ ego/L CyC/C A, fl an {my ) >0 i \Ter cf [,4 Wanna! - Hark <3, 1 / \ P t , em’ascm {’3 "/7‘ @ Axgqu/p gene/ex” 6‘7”? y. r, (IV) Macaw 7mm?” 7"“‘0/6“ {a}? r/ ’i If i {,4 “351 «I. 9;? siwzfi’we/ MN“ r a dam/fie. ( 5 5, and otéi’tt'n’umfj T C “ 4/“ ,6 ) . ...../ r' 26 \ 5 r nix/vs L..Ji“\/Ci*3 CU“ “""WC: CT i I " ”’ Jni in HM; "' (V) gap/‘ch wag/erch 2 VJJ (, o t ( ) / .v a a J. , ‘t. iasc gs/eeij Urisréxil’f) 4’;ngfo OSCiia gl’f U12 j . wrv WW.“ I f) z n .. [V r '“7 y A c Li (97 a i Q! , «a n (isxn'li favch K‘- . “If A ‘, r ‘ VGLVS (I) fit [5 Ma 37/65?ka a/y/l/ediloo Wait” 0‘ L r .4 ,' a?" '1 e as the new €0F./\mitekrv\m g0: V0“ 3 I j: 1 My . : l V i p a, .p ,1 , q \[0\(~"{-":r‘(£ 0\CTS kt ’6 . i. 1' ’H'f‘ Ce aflii‘ <5i¢iftCZ/{‘4“r'i fO(”/0i(€ H“ J 7 L? ([5 I a, «fix.» 5 a oyr'mm' e A H 1‘ ,_ {Lei w: I. ‘ f "a v/ 4': L h: 3 H4301 ENCle 7‘: [’L )“‘ M ii “(Gin 9' , ‘ v ‘I ;' I O V l/’ 5 ’L ‘J\« bidrr}; turf} ' The system shown below is deflected by x from the equilibrium position and is oscillating harmonically. Find the natural frequency. /~\ 35 v- m Q‘l'xfll’w“ \"Eb’vk‘x‘fl Vafycll- 0‘] x- a "/lfl/fl 5 -’7 Conseu‘xlo’lwo Su‘b (31" T: g at a ,L ’2, iii-191‘ F You have been asked to design a suspension system for a vehicle with the mass 500 kg. The vehicle and its suspension are modeled as a single degree-of—freedom oscillator. The customer wants the damped period to be ls,‘ and that the oscillation amplitude decays to 25% after the first half-cycle. Find (a) the damping ratio (b) spring stiffness (c) damping coefficient. m 35% j (a) 3:? i , M“ I 0 “’6” L“ 1 iii (La) {-3. d {Hts 24:; (C) C” I ) fl ‘ Q” a at: <\ lot/“l (0’) 0 , ’ 0% {X ; KK‘MW, ":1 f j -M wwwwww _, 0M ‘3‘ " ‘ u 1 (L q"? {:mdqw =3 3 f 3'5 r "“i/ 7 1 (r Fly/‘- m‘ 1—; 6Jqu 5° .‘ 3 4.. _ v v.7... WWI,” { r" I " a f [L l )x , 15 a: L; I/W § —-. mg" g) N l r If s 5 2; g I I ,/5 / fifl M wwwfiwflflmm W} M“ O a [Ni-a: l ier’k it) E; V 9““? I? )r c. "’ 4"\ 5) C T: W. ‘1” C n'} (I) 1 ‘ “A “‘10:, I" L“) C 3 R ............ A l\ u” c m PPPPP w ' rw‘ ‘ {i h!“ 3 (— ; Lt (>5 (“2:5 «ii: 3 w :3 a; g i K fl “ ~ v A“ r (x 2: Ha.) l WX * C >‘ a. /. r F W 1/» v; w C 5 R-» "g // 0.9.2 4\\. 9‘ Z l/J\ , __'___’ :5 V r» :7 w“ " i 3 i M ' V (Li/“cm 1 2““ “J” .r" [Ad / \ixeg'é Wm ‘1 0: i625?— 7770 MPH/5‘6 I/CYPO/‘I’Sfl 74mm“ 1’ j ,Swfle fig) 1)] ~v a 8m max L4H) {i «WM—rm H U (hr {Jar ’ ’0‘“ 5;. 0 £55232 :5 Ma) ’? rig H) g "‘_'*"‘—”m‘“‘ 8 4,}! 'r ' l at??? i \. (v /‘ “I {I 2:) Q g l: {l ,1 5 if v “€112; e U H“) 1/ i . F‘v-—»w""“w‘- fi—V—‘HW fl ’ ‘ i :‘x .', “(a [fa ., "I"! Ar ( VIM flan/ejéézffll‘ {EMMA-3 itifiuflt’x “Q «MMJ ~ :—!/—//WW ..... J r; ‘ . r. J; 1 (£45) { ( Lt 5m 0462/21.} UT! J, a w ‘ 'LL ,- 6 j i I, Mm , {L 1: ix hacks: gr -» )1 (1 3‘3?! . y ‘‘‘‘‘‘‘‘‘‘‘‘‘‘ v g H 0 HHHHHHHHH W gm”, WM, ~ i_ re An oscillator is governed by the equation 422' + 2x + 4x = Foe) wherelfit) = 4 — e‘t , t 2 0 . Set up the equation for the force response Without evaluating the integral. ...
View Full Document

Page1 / 5

Exam _1_sol - 1 Exam #1. MAE 650:443 Vibration and Control...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online