Sample_Exam_Problems_with_Answers_-_Set_1 -...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Sample Exam Problems with Answers – Set #1 Each problem has been evaluated for degree of difficulty using the following legend. DoD= Degree of Difficulty. E = easy. M = median. H = hard. ED = extra difficult 1.A sample of 16 students is taken and it assumed to be normally distributed. The  average age in the sample was 22 years with a standard deviation of 6 years. Construct  a 95 % confidence interval for the average age of the population. Answer: 19.06  -  24.94 DoD=E 2.Construct a 90% confidence for the population mean, µ. Assume the population has a  normal distribution. In a recent study of 22 eighth graders, the mean number of hours  per week that they watched television was 19.6 with a standard deviation of 5.8 hours. Answer: 17.5659 – 21.6341 A DoD=E 3.A random sample of 40 students has a mean annual earnings of $3120 and a standard  deviation of $677. Construct the 90% confidence interval for the population. Answer: 2943.91 – 3296.09 DoD=E D 4.IQ test scores are normally distributed with a mean of 100 and a standard deviation of  15. An individual’s IQ score is found to be 120. Find the z-score corresponding to this value. Answer: 1.3333 DoD=E 5.An airline knows from experience that the distribution of the number of suitcases that  get lost each week on a certain route is approximately normal with µ = 15.5 and   = 3.6. What is σ   the probability that during a given week the airline will lose less than 20 suitcases? Answer: 0.89435 DoD=M
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
6.A sample of 100 bean cans showed an average weight of 13 ounces with a standard  deviation of 0.8 ounces. Construct a 90% confidence interval for the mean of the  population. Answer: 12.8684 – 13.1316 DoD=E 7.Peter took his finance exam last week, and he got 89/100. The mean for his class was  77, with a standard deviation of 15. Jenna took her math test last week too, and she got  84/100. The mean for her class was 75, with a standard deviation of 5. They were  arguing on who did better, who do you think did better relative to their class?  Answer : We need to use z-scores.  For Peter  Z=0.8 For Jenna the Z value is 1.8 The z-score associated with Jenna's score test is higher than the z-score test 
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 09/17/2011 for the course QMB 3200 taught by Professor Zanakis during the Spring '08 term at FIU.

Page1 / 6

Sample_Exam_Problems_with_Answers_-_Set_1 -...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online