CE130_F01_fn_Li - UNIVERSITY OF CALIFORNIA, BERKELEY FALL...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: UNIVERSITY OF CALIFORNIA, BERKELEY FALL SEMESTER 2001 FINAL EXAMINATION (CE130-2 Mechanics of Materials) Problem 1: (15 points) A pinned 2-bar structure is shown in Figure 1. There is an external force, W = 5000 N , acting on the point C. (1) nd internal axial forces for bar AC, BC; (2) nd the normal stresses in bar AC and BC ( A 1 = A 2 = 0 . 01 m 2 , and E = 200 MPa); (3) nd the vertical displacement at nodal point C. o 1 = 2 30 o = 60 C L = 1 m W = 5000 N A B Figure 1: Schematic illustration of problem 1 (Hint: (1) Statics and equilibrium equations; (2) = P A ; (3) use Castiglianos second theorem, v = U W , or the energy method to nd the vertical displace-ment at point C. The elastic potential energy in a single bar is: U = P 2 L 2 EA , where P is the internal axial force, L is the length of the bar, E is the Youngs modulus, and A is the cross section of the bar, and W e = 1 2 W v . ) 1 Problem 2 (15 points) A three-bar system as shown in Figure 2. The external force F is acting at the point C, i.e. the interface between the 2nd bar and the third bar. The system is statically indeterminate of rank one. (1) Find the reaction force at point A and B, i.e. R A and R B ; (2) Find the displacement at point C. (2) Find the displacement at point C....
View Full Document

Page1 / 8

CE130_F01_fn_Li - UNIVERSITY OF CALIFORNIA, BERKELEY FALL...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online