This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: 2. Spivak # 2.8, 2.12, 2.13, 3.3(i)(iii), 3.16, 3.19(i), 3.21(a)(b). 3. Let A = { 1 , 3 , 4 , 5 , 8 } and B = { 2 , 3 , 4 , 5 } . The set { (1 , 4) , (5 , 2) , (4 , 5) , (3 , 3) , (8 , 4) } deﬁnes a function from A into B . T or F 4. Find the domain of the function f ( x ) = q x1 x +1 + 1 log 4 (42 x ) . 5. Prove that: (a) lim x → a √ x = √ a where a ∈ R ,a > . (b) lim x → 1 2 x 23 x + 1 x1 = 1 . (c) lim x → 2 1 ( x3) 2 = 1 . (d) lim x → 3 x 32 x 2 + x1 = 11 . (e) lim x → x cos ± 6 x ² = 0 . (f) lim x → 1 ( x 21) sin ± 1 x1 ² = 0 . 6. Let f : R → R be a function and let a ∈ R , ‘ ∈ R . Give a precise deﬁnition of f does not approach ‘ at a . ie. lim x → a f ( x ) 6 = ‘. Make sure to ”simplify”/negate your deﬁnition correctly. 2...
View
Full Document
 Summer '11
 Katherine
 Math, Calculus, lim, lim x4

Click to edit the document details